Background: Phytoplankton communities significantly contribute to global biogeochemical cycles of elements and underpin marine food webs. Although their uncultured genomic diversity has been estimated by planetary-scale metagenome sequencing and subsequent reconstruction of metagenome-assembled genomes (MAGs), this approach has yet to be applied for complex phytoplankton microbiomes from polar and non-polar oceans consisting of microbial eukaryotes and their associated prokaryotes.

Results: Here, we have assembled MAGs from chlorophyll a maximum layers in the surface of the Arctic and Atlantic Oceans enriched for species associations (microbiomes) with a focus on pico- and nanophytoplankton and their associated heterotrophic prokaryotes. From 679 Gbp and estimated 50 million genes in total, we recovered 143 MAGs of medium to high quality. Although there was a strict demarcation between Arctic and Atlantic MAGs, adjacent sampling stations in each ocean had 51-88% MAGs in common with most species associations between Prasinophytes and Proteobacteria. Phylogenetic placement revealed eukaryotic MAGs to be more diverse in the Arctic whereas prokaryotic MAGs were more diverse in the Atlantic Ocean. Approximately 70% of protein families were shared between Arctic and Atlantic MAGs for both prokaryotes and eukaryotes. However, eukaryotic MAGs had more protein families unique to the Arctic whereas prokaryotic MAGs had more families unique to the Atlantic.

Conclusion: Our study provides a genomic context to complex phytoplankton microbiomes to reveal that their community structure was likely driven by significant differences in environmental conditions between the polar Arctic and warm surface waters of the tropical and subtropical Atlantic Ocean. Video Abstract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047304PMC
http://dx.doi.org/10.1186/s40168-022-01254-7DOI Listing

Publication Analysis

Top Keywords

arctic atlantic
16
phytoplankton microbiomes
12
mags
10
metagenome-assembled genomes
8
atlantic oceans
8
complex phytoplankton
8
species associations
8
atlantic mags
8
eukaryotic mags
8
mags diverse
8

Similar Publications

Short-term evolutionary implications of an introgressed size-determining supergene in a vulnerable population.

Nat Commun

January 2025

Florida Museum of Natural History, Dickinson Hall, 1659 Museum Road, Gainesville, FL, 32611, USA.

The Thorny Skate (Amblyraja radiata) is a vulnerable species displaying a discrete size-polymorphism in the northwest Atlantic Ocean (NWA). We conducted whole genome sequencing of samples collected across its range. Genetic diversity was similar at all sampled sites, but we discovered a ~ 31 megabase bi-allelic supergene associated with the size polymorphism, with the larger size allele having introgressed in the last ~160,000 years B.

View Article and Find Full Text PDF

Borealis is a recently discovered submerged mud volcano in the Polar North Atlantic, differing from the numerous methane seepages previously identified in the region. Here we show in situ observations from a remotely operated vehicle (ROV), capturing the release of warm (11.5 °C) Neogene sediments and methane-rich fluids from a gryphon at Borealis.

View Article and Find Full Text PDF

We present the first documented case of highly pathogenic avian influenza virus (HPAIV) subtype H5N5 in an Atlantic walrus (). The animal was found dead in Svalbard, Norway, in 2023. Sequence analysis revealed the highest genetic similarity with virus isolates from different avian hosts.

View Article and Find Full Text PDF

This study examines how southern wintering areas may contribute to organochlorine (OCs) loads in arctic seabirds during breeding. Light-sensitive geolocators (GLS loggers) were deployed on Arctic skuas (Stercorarius parasiticus) in one high arctic and two subarctic colonies. Hexcahlorobenzene (HCB), Chlordanes, Mirex, p, p'-dichlorodiphenyldichloro- ethylene (p, p'-DDE), and Polychlorinated biphenyls (PCBs) were measured in the blood of breeding adults at the nest (58 individuals, a total of 128 samples) in northern Norway and Svalbard between 2009 and 2015.

View Article and Find Full Text PDF

The Arctic environment plays a critical role in the global climate system and marine biodiversity. The region's ice-covered expanses provide essential breeding and feeding grounds for a diverse assemblage of marine species, who have adapted to thrive in these harsh conditions and consequently are under threat from global warming. The bearded seal (Erignathus barbatus), including two subspecies (E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!