The epithelial-mesenchymal transition (EMT) is a vital driver of tumor progression. It is a well-known and complex trans-differentiation process in which epithelial cells undergo morphogenetic changes with loss of apical-basal polarity, but acquire spindle-shaped mesenchymal phenotypes. Lysine acetylation is a type of protein modification that favors reversibly altering the structure and function of target molecules via the modulation of lysine acetyltransferases (KATs), as well as lysine deacetylases (KDACs). To date, research has found that histones and non-histone proteins can be acetylated to facilitate EMT. Interestingly, histone acetylation is a type of epigenetic regulation that is capable of modulating the acetylation levels of distinct histones at the promoters of EMT-related markers, EMT-inducing transcription factors (EMT-TFs), and EMT-related long non-coding RNAs to control EMT. However, non-histone acetylation is a post-translational modification, and its effect on EMT mainly relies on modulating the acetylation of EMT marker proteins, EMT-TFs, and EMT-related signal transduction molecules. In addition, several inhibitors against KATs and KDACs have been developed, some of which can suppress the development of different cancers by targeting EMT. In this review, we discuss the complex biological roles and molecular mechanisms underlying histone acetylation and non-histone protein acetylation in the control of EMT, highlighting lysine acetylation as potential strategy for the treatment of cancer through the regulation of EMT. Video Abstract.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9052664 | PMC |
http://dx.doi.org/10.1186/s12964-022-00870-y | DOI Listing |
Mol Cell
December 2024
Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK. Electronic address:
Promoters of developmental genes in embryonic stem cells (ESCs) are marked by histone H3 lysine 4 trimethylation (H3K4me3) and H3K27me3 in an asymmetric nucleosomal conformation, with each sister histone H3 carrying only one of the two marks. These bivalent domains are thought to poise genes for timely activation upon differentiation. Here, we show that asymmetric bivalent nucleosomes recruit repressive H3K27me3 binders but fail to enrich activating H3K4me3 binders, thereby promoting a poised state.
View Article and Find Full Text PDFRedox Biol
December 2024
Graduate Program in Toxicology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. Electronic address:
Alcohol consumption induces hepatocyte damage through complex processes involving oxidative stress and disrupted metabolism. These factors alter proteomic and epigenetic marks, including alcohol-induced protein acetylation, which is a key post-translational modification (PTM) that regulates hepatic metabolism and is associated with the pathogenesis of alcohol-associated liver disease (ALD). Recent evidence suggests lysine acetylation occurs when a proximal cysteine residue is within ∼15 Å of a lysine residue, referred to as a cysteine-lysine (Cys-Lys) pair.
View Article and Find Full Text PDFMetabolites
December 2024
The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China.
General control nonderepressible 5 (Gcn5) is a lysine acetyltransferase (KAT) that is evolutionarily conserved across eukaryotes, with two homologs (Kat2a and Kat2b) identified in humans and one (Gcn5) in . Gcn5 contains a P300/CBP-associated factor (PCAF) domain, a Gcn5-N-acetyltransferase (GNAT) domain, and a Bromodomain, allowing it to regulate gene expression through the acetylation of both histone and non-histone proteins. In , Gcn5 is crucial for embryonic development, with maternal Gcn5 supporting early development.
View Article and Find Full Text PDFJ Control Release
December 2024
School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom. Electronic address:
Int Immunopharmacol
December 2024
Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong, PR China. Electronic address:
Curcumin is a hydrophobic polyphenolic compound with potent anti-inflammatory properties. However, whether it can achieve therapeutic effects by alleviating neuroinflammation in patients with Parkinson's disease (PD) and its potential mechanism are still unknown. This study explored the effects of curcumin on neuroinflammation in dopaminergic neurons and deciphered its direct target in the histone deacetylase 6 (HDAC6)-Nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) pathway, revealing the potential role of curcumin in the treatment of Parkinson's disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!