Hollow gold nanoparticles have great potential for localized surface plasmon resonance (LSPR) sensing. In this study, we investigated the refractive index (RI) sensitivities of single hollow gold nanosphere (HAuNS) with thin Au shell and inner cavity and single solid gold nanosphere (AuNS) in media with different RIs. The HAuNS exhibited a remarkable improvement in the RI sensitivity than the AuNS of similar size. The increased RI sensitivity of HAuNSs was ascribed to plasmon coupling between the inner and outer surface of the Au nanoshell. We then investigated the homogeneous LSPR scattering inflection points (IFs) to better understand the RI sensitivity of single HAuNS. The LSPR IF at the long wavelength side exhibited a better RI sensitivity compared to the wavelength shift of its counterpart LSPR maximum peak. Furthermore, the single HAuNS showed a remarkable improvement in the RI sensitivity at the LSPR IFs when compared to the AuNS of similar size. Therefore, we provided a new insight into the effect of inner cavity of HAuNS on the RI sensitivity of homogeneous LSPR IFs for use in LSPR-based biosensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050728PMC
http://dx.doi.org/10.1038/s41598-022-11197-6DOI Listing

Publication Analysis

Top Keywords

hollow gold
12
inner cavity
12
localized surface
8
surface plasmon
8
plasmon resonance
8
inflection points
8
single hollow
8
gold nanosphere
8
remarkable improvement
8
improvement sensitivity
8

Similar Publications

Freeze-Induced Protein Assembly of α-Synuclein into Stable Microspheres to Fabricate Light-Induced Cargo Release Systems.

ACS Appl Mater Interfaces

December 2024

School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea.

Stable hollow-type microspheres (MSs) have been fabricated using α-synuclein (αS), an amyloidogenic protein, via freeze-induced protein self-assembly. This assembly process involves three steps: rapid freezing to form spherical protein condensates from αS oligomers, frozen annealing to form a crust on the condensate and freeze-drying to create an interior lumen via the three-dimensional (3D) coffee-stain effect. The crust produced during the frozen-annealing step is a β-sheet-mediated protein structure that is presumed to be created at the quasi-liquid layer of the protein-ice interface and thus contributes to the stability of MSs in aqueous solutions at room temperature without any additional surface stabilization.

View Article and Find Full Text PDF

Alpha-fetoprotein (AFP), serves as a reliable and vital biomarker for precise diagnosis and effective monitoring of hepatocellular carcinoma, requires precise detection. Herein, a sandwich-structured electrochemical immunosensor was crafted, employing three-dimensional layered porous carbon modified with gold nanoparticles (Au NPs) as the substrate and Au NPs/CuS as the labeling compound for accurate and sensitive detection of AFP. Due to the effective coordination between the 3D carbon network, Au NPs, and hollow CuS nanocubes, the sandwich-structured electrochemical immunosensor was able to produce three distinct response signals via various detection techniques, demonstrating a broad linear range (0.

View Article and Find Full Text PDF

Gold nanoclusters decorated hollow ZIF-8 encapsulating iron-catecholates as oxidase mimetics for ratiometric colorimetric detection of nitrite.

Mikrochim Acta

December 2024

College of Food Science and Engineering, Wuhan Polytechnic University, Xuefu South Road No. 68, Changqing Garden, Wuhan, Hubei Province, 430023, China.

Gold nanoclusters decorated hollow ZIF-8 encapsulating iron-catecholates (Fe-HHTP@HZIF-8@ AuNCs) was formed through self-assembly of Fe and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP), in situ embedding of ZIF-8, and Au-Zn exchange reaction. Its morphology and structure were fully characterized by high-resolution transmission electron microscopy, X-ray diffraction, transmission electron microscopy element mapping, and X-ray photoelectron spectroscopy. Additionally, its oxidase-like activity was explored with K of 0.

View Article and Find Full Text PDF

Nanomaterials based on hollow gold nanospheres for cancer therapy.

Regen Biomater

October 2024

State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P.R. China.

Article Synopsis
  • * HGNs have superior properties, such as higher photothermal conversion efficiency and enhanced Raman scattering, making them preferable for targeted drug delivery and tumor imaging.
  • * The review highlights the synthesis methods for HGNs and their applications in cancer diagnostics and therapy, while also addressing current challenges for future advancements in HGN-based nanomaterials.
View Article and Find Full Text PDF

Restructuring Biologically Assembled Binding Protein-Biopolymer Conjugates toward Advanced Materials.

ACS Appl Mater Interfaces

December 2024

Centre for Cell Factories and Biopolymers, Griffith Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD 4111, Australia.

Bacterial cell factories have been successfully engineered to efficiently assemble spherical polyhydroxybutyrate inclusions coated with functional proteins of interest. In these submicrometer-sized core-shell assemblies, proteins are bioconjugated to the polymer core, enabling bioengineering for uses as bioseparation resins, enzyme carriers, diagnostic reagents, and particulate vaccines. Here, we explore whether these functional protein-polymer assemblies could be restructured via dissolution and subsequent precipitation while retaining the functionality of the conjugated protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!