AI Article Synopsis

  • Human NANOG is a master transcription factor that plays a crucial role in resetting stem cells to a state of ground-state pluripotency through its unique features and dose-sensitive function.
  • It has a disordered structure with a prion-like domain that can form gel-like condensates and higher-order oligomers, enabling it to effectively interact with DNA.
  • The study shows that the assembly of NANOG is key for recognizing specific DNA elements and facilitating important chromatin interactions, highlighting its essential role in maintaining the pluripotent genome.

Article Abstract

Human NANOG expression resets stem cells to ground-state pluripotency. Here we identify the unique features of human NANOG that relate to its dose-sensitive function as a master transcription factor. NANOG is largely disordered, with a C-terminal prion-like domain that phase-transitions to gel-like condensates. Full-length NANOG readily forms higher-order oligomers at low nanomolar concentrations, orders of magnitude lower than typical amyloids. Using single-molecule Förster resonance energy transfer and fluorescence cross-correlation techniques, we show that NANOG oligomerization is essential for bridging DNA elements in vitro. Using chromatin immunoprecipitation sequencing and Hi-C 3.0 in cells, we validate that NANOG prion-like domain assembly is essential for specific DNA recognition and distant chromatin interactions. Our results provide a physical basis for the indispensable role of NANOG in shaping the pluripotent genome. NANOG's unique ability to form prion-like assemblies could provide a cooperative and concerted DNA bridging mechanism that is essential for chromatin reorganization and dose-sensitive activation of ground-state pluripotency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106587PMC
http://dx.doi.org/10.1038/s41556-022-00896-xDOI Listing

Publication Analysis

Top Keywords

nanog
8
nanog prion-like
8
dna bridging
8
chromatin reorganization
8
human nanog
8
ground-state pluripotency
8
prion-like domain
8
prion-like assembly
4
assembly mediates
4
dna
4

Similar Publications

Doublecortin-like kinase 1 (DCLK1) has been revealed to be involved in modulating cancer stemness and tumor progression, but its role in prostate cancer (PCa) remains obscure. Castration-resistant and metastatic PCa exhibit aggressive behaviors, and current therapeutic approaches have shown limited beneficial effects on the overall survival rate of patients with advanced PCa. This study aimed to investigate the biological role and potential molecular mechanism of DCLK1 in the progression of PCa.

View Article and Find Full Text PDF

Peritoneal metastasis (PM) remains a major challenge in patients with gastric cancer (GC) and occurs preferentially in adipose-rich organs, such as the omentum. Adipose-derived stem cells (ASCs) may influence cancer behavior. This study aimed to investigate whether ASCs isolated from the omentum can act as progenitors of cancer-associated fibroblasts (CAFs) and analyze their effects on the cancer stem cell (CSC) niche and the treatment resistance of GC cells.

View Article and Find Full Text PDF

Pig production through crossbreeding methods is a pillar of the swine industry; however, research on the fertilization ability of male pigs in crossbreeds is lacking. Therefore, this study investigated the effects of Duroc sperm (DS) and Landrace sperm (LS) on fertility in Yorkshire × Landrace × Duroc (YLD) oocytes. Sperm were collected from the Duroc and Landrace species, and sperm characteristics, viability, and acrosome reactions were analyzed using flow cytometry.

View Article and Find Full Text PDF

Unlabelled: The neurodegenerative disorder Frontotemporal Dementia (FTD) can be caused by a repeat expansion (GGGGCC; G4C2) in C9orf72. The function of wild-type C9orf72 and the mechanism by which the C9orf72-G4C2 mutation causes FTD, however, remain unresolved. Diverse disease models including human brain samples and differentiated neurons from patient-derived induced pluripotent stem cells (iPSCs) identified some hallmarks associated with FTD, but these models have limitations, including biopsies capturing only a static snapshot of dynamic processes and differentiated neurons being labor-intensive, costly, and post-mitotic.

View Article and Find Full Text PDF

Fatty acid desaturase 2 (FADS2) affects the pluripotency of hESCs by regulating energy metabolism.

Int J Biol Macromol

January 2025

State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China. Electronic address:

Human embryonic stem cells (hESCs) possess the ability to differentiate into various cell types, which is intricately linked to fatty acid synthesis and metabolism. Fatty acid desaturase 2 (FADS2) plays important role in fatty acid metabolism. In this study, we elucidate that the inhibition of FADS2 by SC-26196 enhances hESC pluripotency by upregulating key pluripotency genes such as POU5F1, NANOG, and KLF5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!