Fusarium sp. RK97-94 is a producer of potent antimalarial compounds such as lucilactaene and its derivatives. The biosynthetic gene cluster of lucilactaene was identified but only a knockout mutant of methyltransferase (luc1) was reported in previous papers. Herein, we report on isolation and identification of prelucilactaene G (1), and prelucilactaene H (2) from the aldehyde dehydrogenase knockout strain (∆luc3) culture broth, as well as prelucilactaene A (3), prelucilactaene B (4), and two isomeric mixtures of prelucilactaene E (5) and prelucilactaene F (6), from the P450 monooxygenase knockout strain (∆luc2) culture broth. Our data, unlike the previous ones, suggest the involvement of the aldehyde dehydrogenase (Luc3) in lucilactaene biosynthesis, and support the involvement of the P450 monooxygenase (Luc2) in C-20 hydroxylation rather than C-13-C-14 epoxidation or C-15 hydroxylation. Isolated compounds displayed moderate to strong antimalarial activities, and the structure-activity relationship of lucilactaene derivatives was examined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41429-022-00529-3 | DOI Listing |
J Antibiot (Tokyo)
July 2022
Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, Japan.
Fusarium sp. RK97-94 is a producer of potent antimalarial compounds such as lucilactaene and its derivatives. The biosynthetic gene cluster of lucilactaene was identified but only a knockout mutant of methyltransferase (luc1) was reported in previous papers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!