Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Endo-β-N-acetylglucosaminidases (ENGases) are enzymes that hydrolyze the N-linked oligosaccharides. Many ENGases have already been identified and characterized. However, there are still a few enzymes that have hydrolytic activity toward multibranched complex-type N-glycans on glycoproteins. In this study, one novel ENGase from Bacteroides nordii (Endo-BN) species was identified and characterized. The recombinant protein was prepared and expressed in Escherichia coli cells. This Endo-BN exhibited optimum hydrolytic activity at pH 4.0. High performance liquid chromatography (HPLC) analysis showed that Endo-BN preferred core-fucosylated complex-type N-glycans, with galactose or α2,6-linked sialic acid residues at their non-reducing ends. The hydrolytic activities of Endo-BN were also tested on different glycoproteins from high-mannose type to complex-type oligosaccharides. The reaction with human transferrin, fetuin, and α1-acid glycoprotein subsequently showed that Endo-BN is capable of releasing multi-branched complex-type N-glycans from these glycoproteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2022.03.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!