Multivariate classification of cannabis chemovars based on their terpene and cannabinoid profiles.

Phytochemistry

Department of Food Quality, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7505101, Israel. Electronic address:

Published: August 2022

Cannabis is used to treat various medical conditions, and lines are commonly classified according to their total concentrations of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Based on their ratio of total THC to total CBD, cannabis cultivars are commonly classified into high-THC, high-CBD, and hybrid classes. While cultivars from the same class have similar compositions of major cannabinoids, their levels of other cannabinoids and their terpene compositions may differ substantially. Therefore, a more comprehensive and accurate classification of medicinal cannabis cultivars, based on a large number of cannabinoids and terpenes is needed. For this purpose, three different chemometric-based classification models were constructed using three sets of chemical profiles. We examined those models to determine which provides the most accurate "chemovar" classification. This was done by analyzing profiles of cannabinoids, terpenes, and the combination of these substances using the partial least square-discriminant analysis multivariate (PLS-DA) technique. The chemical profiles were selected from the three major classes of medicinal cannabis that are most commonly prescribed to patients in Israel: high-THC, high-cannabigerol (CBG), and hybrid. We studied the correlations between cannabinoids and terpenes to identify major bio-indicators representing the plant's terpene and cannabinoid content. All three PLS-DA models provided highly accurate classifications, utilizing six to nine latent variables with an overall accuracy ranging from 2 to 11% CV. The PLS-DA model applied to the combined cannabinoid-and-terpene profile did the best job of differentiating between the chemovars in terms of misclassification error, sensitivity, specificity, and accuracy. The combined cannabinoid-and-terpene PLS-DA profile had cross-validation and prediction misclassification errors of 4% and 0%, respectively. This is the first study to demonstrate the highly accurate classification of samples of medicinal cannabis based on their cannabinoid and terpene profiles, as compared to cannabinoid profiles alone. Furthermore, our correlation analysis indicated that 11 cannabinoids and terpenes might serve as bio-indicators for 32 different active compounds. These findings suggest that the use of multivariate statistics could assist in breeding studies and serve as a tool for minimizing the mislabeling of cannabis inflorescences.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2022.113215DOI Listing

Publication Analysis

Top Keywords

cannabinoids terpenes
16
medicinal cannabis
12
terpene cannabinoid
8
cannabinoid profiles
8
commonly classified
8
cannabis cultivars
8
accurate classification
8
chemical profiles
8
highly accurate
8
combined cannabinoid-and-terpene
8

Similar Publications

In addition to the known therapeutic indications for cannabidiol, its administration by inhalation appears to be of great interest. Indeed, there is evidence of cannabidiol's efficacy in several physiological pathways, suggesting its potential for a wide range of applications for both local and systemic pulmonary administration like cancers. Significant advances in pulmonary drug delivery have led to innovative strategies to address the challenges of increasing the respirable fraction of drugs and standardizing inhalable products.

View Article and Find Full Text PDF

The present study was aimed at revealing the metabolic changes that occurred in the cellular lipid pattern of acute and chronic myeloid leukaemia cells following treatment with cannabidiol (CBD). CBD is a non-psychoactive compound present in Cannabis sativa L., which has shown an antiproliferative action in these type of cancer cells.

View Article and Find Full Text PDF

Cannabis is one of the most widely used drugs, and yet an understanding of its impact on the human brain and body is inconclusive. Medicinal and recreational use of cannabis has increased in the last decade with a concomitant increase in use by pregnant women. The major psychoactive compound in cannabis, Δ-tetrahydrocannabinol (THC), exists in different isomers, with the (-) trans isomer most common.

View Article and Find Full Text PDF

L., a member of the Cannabaceae family, has been thoroughly investigated for its diverse therapeutic properties, primarily attributed to cannabinoids such as delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Secondary, metabolites like terpenes also exhibit pharmacological effects.

View Article and Find Full Text PDF

Cannabidiol (CBD) and Δ-tetrahydrocannabinol (THC), the main components of Cannabis sativa plants, can interact with specific cell receptors known as cannabinoid receptors (CBs). The endogenous compounds anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are CB agonists, and, alongside enzymes, they constitute the endocannabinoid system (ECS) and take part in neuromodulation. Several LC-MS/MS methods have been developed to quantify these compounds in biological matrixes, but a fast and simple method that can determine these analytes in plasma samples simultaneously is not available.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!