Molar absorption coefficients and acid dissociation constants for fluoroquinolone, sulfonamide, and tetracycline antibiotics of environmental concern.

Sci Total Environ

University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, United States of America.

Published: August 2022

Antibiotics are priority contaminants of emerging concern due to their pseudo-persistence in the environment and contribution to the development of antimicrobial resistance. In solution, antibiotics undergo (de)protonation reactions that affect their UV absorbance and, therefore, photolytic fate in natural and engineered systems. This study employed enhanced spectrophotometric methods to determine the acid dissociation constants (as pK values) and molar absorption coefficients for 12 fluoroquinolone, 9 sulfonamide, and 7 tetracycline antibiotics of environmental relevance. Molar absorption coefficient heatmaps were generated for all 28 antibiotics at 200-500 nm and pH 1.8-12.2. The data in the heatmaps were deconvoluted to calculate pK values and specific molar absorption coefficients at each wavelength. All antibiotics had at least one pK value in the environmentally relevant range of 5.5-8.5, and pK values were reported for methacycline, moxifloxacin, nadifloxacin, rolitetracycline, sulfadoxine, and sulfapyridine for the first time. Deprotonation of the carboxylic acid associated with pK (5.5-6.7) exerted the strongest effects on the UV absorbance of fluoroquinolones. For tetracyclines, deprotonation of the tertiary amine at pK (7.8-10.2) was responsible for major shifts in UV absorbance. Although sulfonamides have conserved pK sites, no general trends were observed for the molar absorption coefficients. The structural similarity of fluoroquinolones and tetracyclines supported the potential for a class-based approach to identifying molar absorbance as a function of pH. Overall, the reported pK values and specific molar absorption coefficients will serve as important resources for future studies on antibiotic fate in natural and engineered systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.155508DOI Listing

Publication Analysis

Top Keywords

molar absorption
24
absorption coefficients
20
acid dissociation
8
dissociation constants
8
fluoroquinolone sulfonamide
8
sulfonamide tetracycline
8
tetracycline antibiotics
8
antibiotics environmental
8
fate natural
8
natural engineered
8

Similar Publications

Synthesis of P(AM/AA/SSS/DMAAC-16) and Studying Its Performance as a Fracturing Thickener in Oilfields.

Polymers (Basel)

January 2025

Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi'an Shiyou University, Xi'an 710065, China.

In order to solve the problems of long dissolution and preparation time, cumbersome preparation, and easy moisture absorption and deterioration during storage or transportation, acrylamide (AM), acrylic acid (AA), sodium p-styrene sulfonate (SSS), and cetyl dimethylallyl ammonium chloride (DMAAC-16) were selected as raw materials, and the emulsion thickener P(AM/AA/SSS), which can be instantly dissolved in water and rapidly thickened, was prepared by the reversed-phase emulsion polymerization method. DMAAC-16, the influence of emulsifier dosage, oil-water ratio, monomer molar ratio, monomer dosage, aqueous pH, initiator dosage, reaction temperature, reaction time, and other factors on the experiment was explored by a single-factor experiment, and the optimal process was determined as follows: the oil-water volume ratio was 0.4, the emulsifier dosage was 7% of the oil phase mass, the initiator dosage was 0.

View Article and Find Full Text PDF

Isoindigo (IID)-based non-fullerene acceptors, known for their broad absorption spectra and high charge carrier mobilities, play a crucial role in organic photovoltaics. In this study, two A-DA'D-A type unfused ring acceptors (URAs), IDC8CP-IC and IDC6CP-IC, were designed and synthesized using cyclopentadithiophene (CPDT) and IID core units, each functionalized with different alkyl chains (2-hexyldecyl and 2-octyldodecyl), through an atom- and step-efficient direct C-H arylation (DACH) method. Both URAs, despite the absence of non-covalent conformation locking between CPDT and IID, demonstrated favorable molecular planarity, broad absorption ranges, low band gaps, and high molar absorption coefficients.

View Article and Find Full Text PDF

In situ arsenic immobilization by natural iron (oxyhydr)oxide precipitates in As-contaminated groundwater irrigation canals.

J Environ Sci (China)

July 2025

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China. Electronic address:

Arsenic-contaminated groundwater is widely used in agriculture. To meet the increasing demand for safe water in agriculture, an efficient and cost-effective method for As removal from groundwater is urgently needed. We hypothesized that Fe (oxyhydr)oxide (FeOOH) minerals precipitated in situ from indigenous Fe in groundwater may immobilize As, providing a solution for safely using As-contaminated groundwater in irrigation.

View Article and Find Full Text PDF

Endocytosis mediated by megalin and cubilin is involved in enamel development.

Dev Dyn

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Background: Endocytosis of enamel matrix proteins (EMPs) by ameloblasts is a key process in the mineralization of enamel during the maturation stage of amelogenesis. However, the relevant receptor mediating endocytosis of EMPs is still unclear. The aim of this study was to explore potential endocytic receptors involved in this process.

View Article and Find Full Text PDF

The detection of organophosphorus pesticides, particularly chlorpyrifos, in environmental samples is essential due to their widespread use and associated health risks. In this study, we developed a high-sensitivity fluorescent sensing platform utilizing an Isatin-3-allyl-terbium (IS-Tb) complex in solution for the rapid and selective detection of chlorpyrifos in various water samples. The proposed chemical structure of the complex in solution was evaluated using molar ratio method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!