ClinicaDL: An open-source deep learning software for reproducible neuroimaging processing.

Comput Methods Programs Biomed

Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, F-75013, France. Electronic address:

Published: June 2022

Background And Objective: As deep learning faces a reproducibility crisis and studies on deep learning applied to neuroimaging are contaminated by methodological flaws, there is an urgent need to provide a safe environment for deep learning users to help them avoid common pitfalls that will bias and discredit their results. Several tools have been proposed to help deep learning users design their framework for neuroimaging data sets. Software overview: We present here ClinicaDL, one of these software tools. ClinicaDL interacts with BIDS, a standard format in the neuroimaging field, and its derivatives, so it can be used with a large variety of data sets. Moreover, it checks the absence of data leakage when inferring the results of new data with trained networks, and saves all necessary information to guarantee the reproducibility of results. The combination of ClinicaDL and its companion project Clinica allows performing an end-to-end neuroimaging analysis, from the download of raw data sets to the interpretation of trained networks, including neuroimaging preprocessing, quality check, label definition, architecture search, and network training and evaluation.

Conclusions: We implemented ClinicaDL to bring answers to three common issues encountered by deep learning users who are not always familiar with neuroimaging data: (1) the format and preprocessing of neuroimaging data sets, (2) the contamination of the evaluation procedure by data leakage and (3) a lack of reproducibility. We hope that its use by researchers will allow producing more reliable and thus valuable scientific studies in our field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2022.106818DOI Listing

Publication Analysis

Top Keywords

deep learning
24
data sets
16
learning users
12
neuroimaging data
12
neuroimaging
8
data
8
data leakage
8
trained networks
8
deep
6
learning
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!