Endocrine-disrupting effects on aquatic organisms caused by wastewater discharging have raised extensive concerns. However, the efficiency of various wastewater treatment processes to remove estrogenic activity in effluents and the association with organic micropollutants was not well known. We evaluated the estrogenic activity using a well-characterized in vivo bioassay featuring the Chinese rare minnows (Gobiocypris rarus) and analyzed 886 semi-volatile organic compounds (SVOCs) in effluents from four secondary wastewater treatment plants (SWTP A-D) and a tertiary wastewater treatment plant (TTP E) that utilized various common treatment processes in northern China. The final effluents from SWTPs and TTP E all exhibited estrogenic effects, increasing male fish plasma vitellogenin (VTG) contents and estradiol/testosterone (E/T) ratios. Key regulating genes in the male fish liver including vtg1, vtg3, era, erβ, and cyp19a were upregulated. TTP E demonstrated high performance in reducing estrogenic activity in the effluents, with a reduction of 64% in integrative biomarkers of estrogenic response (IBR). UV disinfection at SWTPs removed IBR by 14%- 33%, while ozone disinfection at TTP E did not reduce IBR. Several SVOCs including alkanes, chlorobenzenes, and phthalates, detected at ng/L to µg/L level, significantly correlated with effluent estrogenic activity. Our findings suggest the necessity and the potential means to improve the efficiency of current wastewater treatment approaches to achieve better protection for aquatic organisms against the joint effects of mixtures of various categories of micropollutants in effluents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.128984 | DOI Listing |
Environ Technol
January 2025
Botany Discipline, School of Biological Sciences and Biotechnology, Goa University, Goa, India.
The dairy industry is a significant sector within the food industries, known for its high-water consumption and consequent generation of dairy wastewater (DWW), which is rich in pollutants like Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). Improper disposal of DWW poses serious environmental challenges, including eutrophication and highlighting the need for sustainable biological treatment methods. This study investigates the potential of indigenous cyanobacterial strains , , , and for the bioremediation of DWW.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Electrical and Electronic Engineering, Pabna University of Science and Technology, Pabna, Bangladesh.
Waterborne bacteria pose a serious hazard to human health, hence a precise detection method is required to identify them. A photonic crystal fiber sensor that takes into account the dangers of aquatic bacteria has been suggested, and its optical characteristics in the THz range have been quantitatively assessed. The PCF sensor was designed and examined as computed in Comsol Multiphysics, a program in which uses the method of "Finite Element Method" (FEM).
View Article and Find Full Text PDFOn August 24, 2023, Japan controversially decided to discharge nuclear wastewater from the Fukushima Daiichi Nuclear Power Plant into the ocean, initiating intense domestic and global debates. This study employs a mixed-method approach, integrating quantitative evolutionary game theory and qualitative data analysis to explore the strategic dynamics among Japan, other nations, and the Japan Fisheries Association regarding this decision. The data includes international environmental reports and economic statistics, served as the basis for simulating decision-making processes under various legal, economic, and environmental pressures.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
National High Magnetic Field Laboratory Geochemistry Group and Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, United States.
Intensification of wastewater treatment residual (i.e., biosolid) applications to watersheds can alter the amount and composition of organic matter (OM) mobilized into waterways.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland.
The inadequate removal of pharmaceuticals and personal care products (PPCPs) by traditional wastewater treatment plants (WWTPs) poses a significant environmental and public health challenge. Residual PPCPs find their way into aquatic ecosystems, leading to bioaccumulation in aquatic biota, the dissemination of antibiotic resistance genes (ARGs), and contamination of both water sources and vegetables. These persistent pollutants can have negative effects on human health, ranging from antibiotic resistance development to endocrine disruption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!