A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A classification of MRI brain tumor based on two stage feature level ensemble of deep CNN models. | LitMetric

A classification of MRI brain tumor based on two stage feature level ensemble of deep CNN models.

Comput Biol Med

Artificial Intelligence & Digital Health, School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland St Lucia, QLD 4072, Australia. Electronic address:

Published: July 2022

The brain tumor is one of the deadliest cancerous diseases and its severity has turned it to the leading cause of cancer related mortality. The treatment procedure of the brain tumor depends on the type, location and size of the tumor. Relying solely on human inspection for precise categorization can lead to inevitably dangerous situation. This manual diagnosis process can be improved and accelerated through an automated Computer Aided Diagnosis (CADx) system. In this article, a novel approach using two-stage feature ensemble of deep Convolutional Neural Networks (CNN) is proposed for precise and automatic classification of brain tumors. Three unique Magnetic Resonance Imaging (MRI) datasets and a dataset merging all the unique datasets are considered. The datasets contain three types of brain tumor (meningioma, glioma, pituitary) and normal brain images. From five pre-trained models and a proposed CNN model, the best models are chosen and concatenated in two stages for feature extraction. The best classifier is also chosen among five different classifiers based on accuracy. From the extracted features, most substantial features are selected using Principal Component Analysis (PCA) and fed into the classifier. The robustness of the proposed two stage ensemble model is analyzed using several performance metrics and three different experiments. Through the prominent performance, the proposed model is able to outperform other existing models attaining an average accuracy of 99.13% by optimization of the developed algorithms. Here, the individual accuracy for Dataset 1, Dataset 2, Dataset 3, and Merged Dataset is 99.67%, 98.16%, 99.76%, and 98.96% respectively. Finally a User Interface (UI) is created using the proposed model for real time validation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2022.105539DOI Listing

Publication Analysis

Top Keywords

brain tumor
16
ensemble deep
8
proposed model
8
dataset dataset
8
brain
6
tumor
5
proposed
5
dataset
5
classification mri
4
mri brain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!