A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cerebrovascular segmentation in phase-contrast magnetic resonance angiography by multi-feature fusion and vessel completion. | LitMetric

Phase-Contrast Magnetic Resonance Angiography (PC-MRA) is a potential way of cerebrovascular imaging, which can suppress non-vascular tissue while presenting vessels. But PC-MRA will bring much noise and is easy to result in partially broken vessels. Usually, deep learning is an effective way to quantify vessels. However, how to choose an appropriate deep learning model is an important and difficult issue. In this work, we adopted the Dempster-Shafer (DS) evidence theory to fuse multi-feature from different models. Also, the vessel thinning and completion method were proposed to fill in information of broken cerebrovascular in PC-MRA images. For quantitative analysis, we chose Precision (PRE), Recall (REC), and Dice Similarity Coefficient (DSC) as assessment metrics, and established U-Net, V-Net, and Dense-Net. The 22 subjects tested this method. Comparison with different fusion strategies and common deep learning models have confirmed the effectiveness of the proposed method. In addition, we scanned Contrast-Enhanced MRA (CE-MRA) for 12 patients to verify reliability of vessel completion. Experiments show that the completion vessel can improve the matching ratio with CE-MRA, which has clinical potential.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compmedimag.2022.102070DOI Listing

Publication Analysis

Top Keywords

deep learning
12
phase-contrast magnetic
8
magnetic resonance
8
resonance angiography
8
vessel completion
8
cerebrovascular segmentation
4
segmentation phase-contrast
4
angiography multi-feature
4
multi-feature fusion
4
vessel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!