Dietary administration of D-chiro-inositol attenuates sex-specific metabolic imbalances in the 5xFAD mouse model of Alzheimer's disease.

Biomed Pharmacother

Instituto de investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; Universidad de Málaga, Andalucia Tech, Facultad de Medicina, Campus de Teatinos s/n, 29071 Málaga, Spain; Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Universidad de Málaga, 29071 Málaga, Spain. Electronic address:

Published: June 2022

Increasing evidence shows that hypothalamic dysfunction, insulin resistance, and weight loss precede and progress along with the cognitive decline in sporadic Alzheimer's Disease (AD) with sex differences. This study aimed to determine the effect of oral dietary administration of D-Chiro-inositol (DCI), an inositol used against insulin resistance associated with polycystic ovary, on the occurrence of metabolic disorders in the transgenic 5xFAD mouse model of AD (FAD: Family Alzheimer's Disease). DCI was administered from 6 to 10 months of age to male and female 5xFAD mice and control (non-Tg) littermates. Energy balance and multiple metabolic and inflammatory parameters in the hypothalamus, liver and plasma were evaluated to assess the central and peripheral effects of DCI. Results indicated that weight loss and reduced food intake in 5xFAD mice were associated with decreased neuropeptides controlling food intake and the appearance of a pro-inflammatory state in the hypothalamus. Oral administration of DCI partially restored energy balance and hypothalamic parameters, highlighting an increased expression of Npy and Agrp and female-specific downregulation of Gfap and Igf1. DCI also partially normalized impaired insulin signaling and circulating insulin, GLP-1, and GIP deficiencies in 5xFAD mice. Principal component analysis of metabolic parameters indicated the presence of a female-specific fatty liver in 5xFAD mice: DCI administration reversed hepatic fat accumulation, β-oxidation, inflammation and increased GOT and GPT levels. Our study depicts that metabolic impairment along with the cognitive decline in a mouse model of AD, which is exacerbated in females, can be ameliorated by oral supplementation with insulin-sensitizing DCI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2022.112994DOI Listing

Publication Analysis

Top Keywords

5xfad mice
16
mouse model
12
alzheimer's disease
12
dietary administration
8
administration d-chiro-inositol
8
5xfad mouse
8
insulin resistance
8
weight loss
8
cognitive decline
8
energy balance
8

Similar Publications

Colony-stimulating factor-1-receptor (CSF1R) inhibitors have been widely used to rapidly deplete microglia from the brain, allowing the remaining microglia population to self-renew and repopulate. These new-born microglia are thought to be "rejuvenated" and have been shown to be beneficial in several disease contexts and in normal aging. Their role in Alzheimer's disease (AD) is thus of great interest as they represent a potential disease-modifying therapy.

View Article and Find Full Text PDF

Background: Recent studies have identified hearing loss (HL) as a primary risk factor for Alzheimer's disease (AD) onset. However, the mechanisms linking HL to AD are not fully understood. This study explored the effects of drug-induced hearing loss (DIHL) on the expression of proteins associated with AD progression in mouse models.

View Article and Find Full Text PDF

Introduction: Cerebrovascular dysfunction occurs in Alzheimer's disease (AD), impairing hemodynamic regulation. Large conductance Ca-activated K channels (BK) regulate cerebrovascular reactivity and are impaired in AD. BK activity depends on intracellular Ca (Ca sparks) and nitro-oxidative post-translational modifications.

View Article and Find Full Text PDF

Impact of noradrenergic inhibition on neuroinflammation and pathophysiology in mouse models of Alzheimer's disease.

J Neuroinflammation

December 2024

Department of Neurosurgery, Stanford University School of Medicine, 1050 Arastradero Road, Building A, Palo Alto, Stanford, CA, 94304, United States of America.

Norepinephrine (NE) modulates cognitive function, arousal, attention, and responses to novelty and stress, and it also regulates neuroinflammation. We previously demonstrated behavioral and immunomodulatory effects of beta-adrenergic pharmacology in mouse models of Alzheimer's disease (AD). The current studies were designed to block noradrenergic signaling in 5XFAD mice through (1) chemogenetic inhibition of the locus coeruleus (LC), (2) pharmacologic blocking of β-adrenergic receptors, and (3) conditional deletion of β1- or β2-adrenergic receptors (adrb1 or adrb2) in microglia.

View Article and Find Full Text PDF

Microglial CD2AP deficiency exerts protection in an Alzheimer's disease model of amyloidosis.

Mol Neurodegener

December 2024

Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.

Background: The CD2-associated protein (CD2AP) was initially identified in peripheral immune cells and regulates cytoskeleton and protein trafficking. Single nucleotide polymorphisms (SNPs) in the CD2AP gene have been associated with Alzheimer's disease (AD). However, the functional role of CD2AP, especially its role in microglia during AD onset, remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!