Objective: The aim of this study was to evaluate image quality in vascular and oncologic dual-energy computed tomography (CT) imaging studies performed with a deep learning (DL)-based image reconstruction algorithm in patients with body mass index of ≥30.

Methods: Vascular and multiphase oncologic staging dual-energy CT examinations were evaluated. Two image reconstruction algorithms were applied to the dual-energy CT data sets: standard of care Adaptive Statistical Iterative Reconstruction (ASiR-V) and TrueFidelity DL image reconstruction at 2 levels (medium and high). Subjective quality criteria were independently evaluated by 4 abdominal radiologists, and interreader agreement was assessed. Signal-to-noise ratio (SNR) and contrast-to-noise ratio were compared between image reconstruction methods.

Results: Forty-eight patients were included in this study, and the mean patient body mass index was 39.5 (SD, 7.36). TrueFidelity-High (DL-High) and TrueFidelity-Medium (DL-Med) image reconstructions showed statistically significant higher Likert scores compared with ASiR-V across all subjective image quality criteria ( P < 0.001 for DL-High vs ASiR-V; P < 0.05 for DL-Med vs ASiR-V), and SNRs for aorta and liver were significantly higher for DL-High versus ASiR-V ( P < 0.001). Contrast-to-noise ratio for aorta and SNR for aorta and liver were significantly higher for DL-Med versus ASiR-V ( P < 0.05).

Conclusions: TrueFidelity DL image reconstruction provides improved image quality compared with ASiR-V in dual-energy CTs obtained in obese patients.

Download full-text PDF

Source
http://dx.doi.org/10.1097/RCT.0000000000001316DOI Listing

Publication Analysis

Top Keywords

image reconstruction
24
image quality
16
image
11
obese patients
8
deep learning
8
body mass
8
truefidelity image
8
quality criteria
8
contrast-to-noise ratio
8
compared asir-v
8

Similar Publications

The most prevalent form of malignant tumors that originate in the brain are known as gliomas. In order to diagnose, treat, and identify risk factors, it is crucial to have precise and resilient segmentation of the tumors, along with an estimation of the patients' overall survival rate. Therefore, we have introduced a deep learning approach that employs a combination of MRI scans to accurately segment brain tumors and predict survival in patients with gliomas.

View Article and Find Full Text PDF

Background: Diffusion-weighted (DW) turbo-spin-echo (TSE) imaging offers improved geometric fidelity compared to single-shot echo-planar-imaging (EPI). However, it suffers from low signal-to-noise ratio (SNR) and prolonged acquisition times, thereby restricting its applications in diagnosis and MRI-guided radiotherapy (MRgRT).

Purpose: To develop a joint k-b space reconstruction algorithm for concurrent reconstruction of DW-TSE images and the apparent diffusion coefficient (ADC) map with enhanced image quality and more accurate quantitative measurements.

View Article and Find Full Text PDF

Convergent-Diffusion Denoising Model for multi-scenario CT Image Reconstruction.

Comput Med Imaging Graph

January 2025

The Department of Computer and Data Science, Case Western Reserve University, Cleveland, OH, USA; The Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.

A generic and versatile CT Image Reconstruction (CTIR) scheme can efficiently mitigate imaging noise resulting from inherent physical limitations, substantially bolstering the dependability of CT imaging diagnostics across a wider spectrum of patient cases. Current CTIR techniques often concentrate on distinct areas such as Low-Dose CT denoising (LDCTD), Sparse-View CT reconstruction (SVCTR), and Metal Artifact Reduction (MAR). Nevertheless, due to the intricate nature of multi-scenario CTIR, these techniques frequently narrow their focus to specific tasks, resulting in limited generalization capabilities for diverse scenarios.

View Article and Find Full Text PDF

A comprehensive review of computational diagnostic techniques for lymphedema.

Prog Biomed Eng (Bristol)

January 2025

Amrita Vishwa Vidyapeetham, Center for Wireless Networks & Applications (WNA), Amrita Vishwa Vidyapeetham Amritapuri, Kollam, India, Kollam, 690525, INDIA.

Lymphedema is localized swelling due to lymphatic system dysfunction, often affecting arms and legs due to fluid accumulation. It occurs in 20% to 94% of patients within 2 to 5 years after breast cancer treatment, with around 20% of women developing breast cancer-related lymphedema (BCRL). This condition involves the accumulation of protein-rich fluid in interstitial spaces, leading to symptoms like swelling, pain, and reduced mobility that significantly impact quality of life.

View Article and Find Full Text PDF

Coupling tree-ring and geomorphic analyses to reconstruct the 1950s massive Glacier Lake Outburst Flood at Grosse Glacier, Chilean Patagonia.

Sci Total Environ

January 2025

Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland; dendrolab.ch, Department of Earth Sciences, University of Geneva, Geneva, Switzerland; Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Switzerland.

Over recent decades, global warming has led to sustained glacier mass reduction and the formation of glacier lakes dammed by potentially unstable moraines. When such dams break, devastating Glacial Lake Outburst Floods (GLOFs) can occur in high mountain environments with catastrophic effects on populations and infrastructure. To understand the occurrence of GLOFs in space and time, build frequency-magnitude relationships for disaster risk reduction or identify regional links between GLOF frequency and climate warming, comprehensive databases are critically needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!