Disease intervention at the DNA level generally has been avoided because of off-target effects. Recent advances in genome editing technologies using CRISPR-Cas9 have opened a new era in DNA-targeted therapeutic approaches. However, delivery of such systems remains a major challenge. Here, we report a selective DNA-modifying small molecule that targets a disease-specific structure and mismatches involved in myotonic dystrophy type 1 (DM1). This ligand alkylates T-T mismatch-containing hairpins formed in the expanded CTG repeats (d(CTG)) in DM1. Ligand alkylation of d(CTG) inhibits the transcription of d(CAG·CTG), thereby reducing the level of the toxic r(CUG) transcript. The bioactivity of the ligand also included a reduction in DM1 pathological features such as disease foci formation and misregulation of pre-mRNA splicing in DM1 model cells. Furthermore, the CTG-alkylating ligand may change the d(CAG·CTG) repeat length dynamics in DM1 patient cells. Our strategy of linking an alkylating moiety to a DNA mismatch-selective small molecule may be generally applicable to other repeat expansion diseases such as Huntington's disease and amyotrophic lateral sclerosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschembio.1c00949 | DOI Listing |
JACC Case Rep
December 2024
Cardiology Unit, Policlinico di Modena Hospital, Modena, Italy.
Myotonic dystrophy type 1 (MD1) is the most common form of muscular dystrophy in adults. MD1 is caused by the expansion of CTG repeats in the DMPK gene and affects various organs beyond muscles. We present a case of a patient with MD1 exhibiting features of metabolic syndrome (MetS), including insulin resistance and dyslipidemia.
View Article and Find Full Text PDFHum Mol Genet
December 2024
Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.
Myotonic dystrophy type 1 (DM1) is a dominantly inherited multi-system disease caused by expanded CTG repeats in the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. Similar to other repeat disorders, the expanded trinucleotide repeat is unstable and demonstrates a tendency to increase repeat size with age in affected tissues. DNA mismatch repair system is implicated in somatic instability.
View Article and Find Full Text PDFOphthalmol Sci
August 2024
Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas.
Objective: An intronic cytosine-thymine-guanine (CTG) triplet repeat expansion in the transcription factor 4 gene () gene (CTG18.1) confers significant risk for the development of Fuchs' endothelial corneal dystrophy (FECD). The objective of this study was to conduct an unbiased survey of the CTG18.
View Article and Find Full Text PDFGenome Res
December 2024
Division of Medical Genetics, University of Washington School of Medicine, Seattle, Washington 98195, USA;
Accurately quantifying the functional consequences of noncoding mosaic variants requires the pairing of DNA sequences with both accessible and closed chromatin architectures along individual DNA molecules-a pairing that cannot be achieved using traditional fragmentation-based chromatin assays. We demonstrate that targeted single-molecule chromatin fiber sequencing (Fiber-seq) achieves this, permitting single-molecule, long-read genomic, and epigenomic profiling across targeted >100 kb loci with ∼10-fold enrichment over untargeted sequencing. Targeted Fiber-seq reveals that pathogenic expansions of the CTG repeat that underlie Myotonic Dystrophy 1 are characterized by somatic instability and disruption of multiple nearby regulatory elements, both of which are repeat length-dependent.
View Article and Find Full Text PDFBMC Biol
December 2024
Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland.
Background: The expansion of CAG/CTG repeats in functionally unrelated genes is a causative factor in many inherited neurodegenerative disorders, including Huntington's disease (HD), spinocerebellar ataxias (SCAs), and myotonic dystrophy type 1 (DM1). Despite many years of research, the mechanism responsible for repeat instability is unknown, and recent findings indicate the key role of DNA repair in this process. The repair of DSBs induced by genome editing tools results in the shortening of long CAG/CTG repeats in yeast models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!