Traceless Benzylic C-H Amination via Bifunctional N-Aminopyridinium Intermediates.

Angew Chem Int Ed Engl

Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.

Published: July 2022

C-H amination reactions provide the opportunity to streamline the synthesis of nitrogen-containing organic small molecules. The impact of intermolecular C-H amination methods, however, is currently limited the frequent requirement for the amine precursors to bear activating groups, such as N-sulfonyl substituents, that are both challenging to remove and not useful synthetic handles for subsequent derivatization. Here, we introduce traceless nitrogen activation for C-H amination-which enables application of selective C-H amination chemistry to the preparation of diverse N-functionalized products-via sequential benzylic C-H N-aminopyridylation followed by Ni-catalyzed C-N cross-coupling with aryl boronic acids. Unlike many C-H amination reactions that provide access to protected amines, the current method installs an easily diversifiable synthetic handle that serves as a lynchpin for C-H amination, deaminative N-N functionalization sequences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9256810PMC
http://dx.doi.org/10.1002/anie.202200665DOI Listing

Publication Analysis

Top Keywords

c-h amination
24
c-h
8
benzylic c-h
8
amination reactions
8
reactions provide
8
amination
6
traceless benzylic
4
amination bifunctional
4
bifunctional n-aminopyridinium
4
n-aminopyridinium intermediates
4

Similar Publications

C-H activation is the most direct way of functionalizing organic molecules. Many advances in this field still require specific directing groups to achieve the necessary activity and selectivity. Developing C-H activation reactions directed by native functional groups is essential for their broad application in synthesis.

View Article and Find Full Text PDF

Thermocontrolled Radical Nucleophilicity vs Radicophilicity in Regiodivergent C-H Functionalization.

Org Lett

January 2025

School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.

The temperature-dependent switching behavior of the saccharin radical is demonstrated, enabling the regiodivergent C-H and C-H functionalization of quinoxalin-2(1)-ones. The saccharin radical was generated through N-Br bond cleavage in -bromosaccharin (NBSA) and was observed to transition between radical and radicophile roles. At -10 °C, it was utilized as a radicophile, resulting in 100% C-amination, while at +35 °C, it acted as a radical, leading to exclusive C-bromination.

View Article and Find Full Text PDF

Chiral heterocyclic alcohols and amines are frequently used building blocks in the synthesis of fine chemicals and pharmaceuticals. Herein, we report a one-pot photoenzymatic synthesis route for -Boc-3-amino/hydroxy-pyrrolidine and -Boc-4-amino/hydroxy-azepane with up to 90% conversions and >99% enantiomeric excess. The transformation combines a photochemical oxyfunctionalization favored for distal C-H positions with a stereoselective enzymatic transamination or carbonyl reduction step.

View Article and Find Full Text PDF
Article Synopsis
  • A new method for C-H functionalization of heteroaryl compounds is introduced, which involves a process called dearomative addition followed by hydrogen autotransfer.
  • This process starts with the hydroruthenation of dienes to create allylruthenium nucleophiles, leading to branched C-C coupling products through addition and β-hydride elimination.
  • The study also details the formation of enantiomerically enriched heteroarylethyl alcohols and amines through oxidative cleavage and dynamic kinetic asymmetric reduction, supported by density functional theory calculations linking regioselectivities to molecular factors.
View Article and Find Full Text PDF

A Rh(III)-catalyzed sequential C-H bond addition to dienes and in situ formed aldimines was developed, allowing for the preparation of otherwise challenging to access amines with quaternary centers at the -position. A broad range of dienes were effective inputs and installed a variety of aryl and alkyl substituents at the quaternary carbon site. Aryl and alkyl sulfonamide and carbamate nitrogen substituents were incorporated by using different formaldimine precursors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!