Titration of Cu(I) Sites in Cu-ZSM-5 by Volumetric CO Adsorption.

ACS Appl Mater Interfaces

Department of Chemistry, NIS and INSTM Reference Centre, Università di Torino, Via P. Giuria 7-10125 and Via G. Quarello 15/A, 10135 Torino, TO, Italy.

Published: May 2022

Cu-exchanged zeolites are widely studied materials because of their importance in industrial energetic and environmental processes. Cu redox speciation lies at the center of many of these processes but is experimentally difficult to investigate in a quantitative manner with regular laboratory equipment. This work presents a novel technique for this purpose that exploits the selective adsorption of CO over accessible Cu(I) sites to quantify them. In particular, isothermal volumetric adsorption measurements are performed at 50 °C on a series of opportunely pre-reduced Cu-ZSM-5 to assess the relative fraction of Cu(I); the setup is fairly simple and only requires a regular volumetric adsorption apparatus to perform the actual measurement. Repeatability tests are carried out on the measurement and activation protocols to assess the precision of the technique, and the relative standard deviation (RSD) obtained is less than 5%. Based on the results obtained for these materials, the same CO adsorption protocol is studied for the sample using infrared spectroscopy, and a good correlation is found between the results of the volumetric measurements and the absorbance of the peak assigned to the Cu(I)-CO adducts. A linear model is built for this correlation, and the molar attenuation coefficient is obtained, allowing for spectrophotometric quantification. The good sensitivity of the spectrophotometric approach and the precision and simplicity of the volumetric approach form a complementary set of tools to quantitatively study Cu redox speciation in these materials at the laboratory scale, allowing for a wide range of Cu compositions to be accurately investigated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100488PMC
http://dx.doi.org/10.1021/acsami.2c03370DOI Listing

Publication Analysis

Top Keywords

volumetric adsorption
12
cui sites
8
redox speciation
8
volumetric
5
adsorption
5
titration cui
4
sites cu-zsm-5
4
cu-zsm-5 volumetric
4
adsorption cu-exchanged
4
cu-exchanged zeolites
4

Similar Publications

Carbon dioxide capture is a vital approach for mitigating air pollution and global warming. In this context, metal-organic frameworks are promising candidates. Particularly, MIL-88A (M), where the metal nodes (M) are connected to fumarate linkers in its structure, has demonstrated significant potential for CO capture.

View Article and Find Full Text PDF

Lithium-tellurium (Li-Te) batteries are gaining attention as a promising next-generation energy storage system due to their superior electrical conductivity and high volumetric capacity compared to sulfur and selenium. Tellurium's unique properties, such as suitable redox potential, excellent conductivity, high volumetric capacity, and greatest stability, position it as a strong candidate for negative electrode materials. This study explores the potential of metal tellurides, specifically CuTe and FeTe monolayers, as effective tellurium host materials, leveraging their polar interactions with lithium polytellurides.

View Article and Find Full Text PDF

The amount of incorporation of linear alcohols and ethers in HSiWO·6HO (HSiW·6HO, 50 wt %) supported on silica (SiO) was estimated by a conventional volumetric method and infrared (IR) spectroscopy, and the state of involved molecules was elucidated. First, the attribution of the key IR band at 2200 cm, which was observed for the water of crystallization of HSiW·6HO, to HO species (protons) was verified by coincident observation of thermogravimetric-differential thermal analysis, X-ray diffraction (XRD), and IR spectroscopy during thermal treatment in addition to the isotope exchange with DO. The 2200 cm band was gradually decreased in intensity by increasing the amount of adsorption of pyridine and was totally consumed at saturation, while the volumetric method provided the accurate number of included pyridine molecules.

View Article and Find Full Text PDF
Article Synopsis
  • Ammonia is seen as a promising hydrogen carrier due to its efficiency, easier storage, and established infrastructure, allowing for on-demand hydrogen generation via electrochemical ammonia oxidation.
  • The study investigates bimetallic PtRh alloy catalysts, which show improved performance in the ammonia oxidation reaction (AOR) compared to standard platinum catalysts, indicating lower energy requirements and better activity.
  • X-ray photoelectron spectroscopy reveals that the Rh component modifies the electronic properties of Pt, reducing issues with catalyst poisoning, thereby enhancing the understanding of AOR mechanisms for future catalyst design.
View Article and Find Full Text PDF

Boron and defects co-doped MXene enables high-performance Na-Se batteries.

J Colloid Interface Sci

December 2024

Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450003, PR China.

Article Synopsis
  • Sodium selenium (Na-Se) batteries show potential for high energy storage but struggle with issues like the shuttling effect and slow reaction rates of selenium cathodes.
  • Improving selenium's surface interactions and catalytic efficiency is crucial for enhancing battery performance.
  • The introduction of boron and defect co-doped MXene (BD-MXene) significantly facilitates electron distribution and enhances the chemical adsorption, resulting in faster electrochemical reactions and improved battery stability and performance.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!