Epoxy nanocomposites containing Mg(OH) nanocrystals (MgNCs, 5.3 wt %) were produced via an eco-friendly "solvent-free one-pot" process. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and thermogravimetric analysis (TGA) confirm the presence of well-dispersed MgNCs. HRTEM reveals the presence also of multisheet-silica-based nanoparticles and a tendency of MgNCs to intergrow, leading to complex nanometric structures with an intersheet size of ∼0.43 nm, which is in agreement with the lattice spacing of the Mg(OH) (001) planes. The synthesis of MgNCs was designed on the basis of a mechanism initially proposed for the preparation of multisheet-silica-based/epoxy nanocomposites. The successful "in situ" generation of MgNCs in the epoxy via a "solvent-free one-pot" process confirms the validity of the earlier disclosed mechanism and thus opens up possibilities of new NCs with different fillers and polymer matrix. The condition would be the availability of a nanoparticle precursor soluble in the hydrophobic resin, giving the desired phase through hydrolysis and polycondensation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097534 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.2c00377 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!