At interphase, de-condensed chromosomes have a non-random three-dimensional architecture within the nucleus, however, little is known about the extent to which nuclear organisation might influence expression or vice versa. Here, using imprinting as a model, we use 3D RNA- and DNA-fluorescence-in-situ-hybridisation in normal and mutant mouse embryonic stem cell lines to assess the relationship between imprinting control, gene expression and allelic distance from the nuclear periphery. We compared the two parentally inherited imprinted domains at the Dlk1-Dio3 domain and find a small but reproducible trend for the maternally inherited domain to be further away from the periphery however we did not observe an enrichment of inactive alleles in the immediate vicinity of the nuclear envelope. Using Zfp57KO ES cells, which harbour a paternal to maternal epigenotype switch, we observe that expressed alleles are significantly further away from the nuclear periphery. However, within individual nuclei, alleles closer to the periphery are equally likely to be expressed as those further away. In other words, absolute position does not predict expression. Taken together, this suggests that whilst stochastic activation can cause subtle shifts in localisation for this locus, there is no dramatic relocation of alleles upon gene activation. Our results suggest that transcriptional activity, rather than the parent-of-origin, defines subnuclear localisation at an endogenous imprinted domain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9129038PMC
http://dx.doi.org/10.1371/journal.pgen.1010186DOI Listing

Publication Analysis

Top Keywords

subnuclear localisation
8
gene expression
8
nuclear periphery
8
localisation associated
4
associated gene
4
expression
4
expression parental
4
parental origin
4
origin imprinted
4
imprinted dlk1-dio3
4

Similar Publications

Unlabelled: Due to the importance of post-translational modification (PTM) in cellular function, viruses have evolved to both take advantage of and be susceptible to such modification. Adenovirus encodes a multifunctional protein called protein VII, which is packaged with the viral genome in the core of virions and disrupts host chromatin during infection. Protein VII has several PTMs whose addition contributes to the subnuclear localization of protein VII.

View Article and Find Full Text PDF

Cellular activity is spatially organized across different organelles. While several structures are well-characterized, many organelles have unknown roles. Profiling biomolecular composition is key to understanding function but is difficult to achieve in the context of small, dynamic structures.

View Article and Find Full Text PDF
Article Synopsis
  • Liquid-liquid phase separation in the cell nucleus plays a key role in gene regulation, chromatin organization, and DNA repair processes.
  • The study utilized lipid-interacting RNA sequencing (LIPRNAseq) and confocal microscopy to explore the interaction of phosphatidylinositol 4,5 bisphosphate (PIP2) with specific RNA, identifying a PIP2-binding RNA motif and its colocalization with long non-coding RNA HANR in the perinucleolar compartment.
  • The findings suggest a link between PIP2, lncHANR, and oncogenic super-enhancers, indicating their potential as prognostic markers for cancer and highlighting the importance of understanding lipid metabolism and RNA interactions for future cancer treatment strategies.
View Article and Find Full Text PDF

The protein composition of human adenovirus replication compartments.

mBio

January 2025

Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico.

Human adenoviruses are double-stranded DNA viruses that replicate in the cell nucleus and induce the formation of replication compartments (RCs) that are critical in viral replication and control of virus-host interactions. RCs are specialized virus-induced subnuclear microenvironments where not only viral genome replication and expression are orchestrated but also host proteins that restrict viral replication are co-opted and subverted. The protein composition of these RCs remains largely unexplored.

View Article and Find Full Text PDF

The expression of , and its resulting protein FKBP51, is strongly induced by glucocorticoids. Numerous studies have explored their involvement in a plethora of cellular processes and diseases. There is, however, a lack of knowledge on the role of the different RNA splicing variants and the two protein isoforms, one missing functional C-terminal motifs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!