XePhIR: the zebrafish xenograft phenotype interactive repository.

Database (Oxford)

Institute of Biology Leiden, Animal Sciences, Leiden University, Einsteinweg 55, CC Leiden 2333, The Netherlands.

Published: April 2022

Zebrafish xenografts are an established model in cancer biology, with a steadily rising number of models and users. However, as of yet, there is no platform dedicated to standardizing protocols and sharing data regarding zebrafish xenograft phenotypes. Here, we present the Xenograft Phenotype Interactive Repository (XePhIR, https://www.xephir.org) as an independent data-sharing platform to deposit, share and repurpose zebrafish xenograft data. Deposition of data and publication with XePhIR will be done after the acceptation of the original publication. This will enhance the reach of the original research article, enhance visibility and do not interfere with the publication or copyrights of the original article. With XePhIR, we strive to fulfill these objectives and reason that this resource will enhance reproducibility and showcase the appeal and applicability of the zebrafish xenograft model. Database URL: https://www.xephir.org.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9216515PMC
http://dx.doi.org/10.1093/database/baac028DOI Listing

Publication Analysis

Top Keywords

zebrafish xenograft
16
xenograft phenotype
8
phenotype interactive
8
interactive repository
8
will enhance
8
original article
8
xenograft
5
xephir
4
xephir zebrafish
4
zebrafish
4

Similar Publications

Targeting the ERK1/2 and p38 MAPK pathways attenuates Golgi tethering factor golgin-97 depletion-induced cancer progression in breast cancer.

Cell Commun Signal

January 2025

Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 road, Guishan District, Taoyuan, Taiwan.

Background: The Golgi apparatus is widely considered a secretory center and a hub for different signaling pathways. Abnormalities in Golgi dynamics can perturb the tumor microenvironment and influence cell migration. Therefore, unraveling the regulatory network of the Golgi and searching for pharmacological targets would facilitate the development of novel anticancer therapies.

View Article and Find Full Text PDF

Medullary thyroid carcinoma (MTC), a rare neuroendocrine tumor comprising 3-5% of thyroid cancers, arises from calcitonin-producing parafollicular C cells. Despite aggressive behavior, surgery remains the primary curative treatment, with limited efficacy reported for radiotherapy and chemotherapy. Recent efforts have explored the pathogenetic mechanisms of MTC, identifying it as a highly vascularized neoplasm overexpressing pro-angiogenic factors.

View Article and Find Full Text PDF

DHODH Inhibition Suppresses and Inhibits the Growth of Medulloblastoma in a Novel In Vivo Zebrafish Model.

Cancers (Basel)

December 2024

Division of Pediatric Oncology and Pediatric Surgery, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden.

Background/objectives: Medulloblastoma (MB) is the most common high-grade paediatric brain tumour, with group 3 MB patients having the worst prognosis. A high prevalence of group 3 tumours shows overexpression of the oncogene, making it a potential therapeutic target. However, attempts to directly inhibit have so far demonstrated limited success.

View Article and Find Full Text PDF

The incidence and mortality rates of colorectal cancer have been steadily increasing, making it one of the most prevalent cancers globally. Although current chemotherapy drugs have shown some efficacy in treating this disease, their associated side effects necessitate the development of more effective treatments and medications. The clinical application of elemene is widely utilized in tumor treatment; however, its efficacy is hindered by the requirement for high dosage and suboptimal anticancer effects.

View Article and Find Full Text PDF

Inhibiting autophagy selectively prunes dysfunctional tumor vessels and optimizes the tumor immune microenvironment.

Theranostics

January 2025

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, People's Republic of China.

Dysfunctional tumor vasculature, hypoxia, and an immunosuppressive microenvironment are significant barriers to effective cancer therapy. Autophagy, which is critical for maintaining cellular homeostasis and apoptosis resistance, is primarily triggered by hypoxia and nutrient deprivation, conditions prevalent in dysfunctional tumor vessels due to poor circulation. However, the role of autophagy in dysfunctional tumor endothelial cells and its impact on treatment and the tumor microenvironment (TME) remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!