Unlabelled: This study reports the beam commissioning results for the first clinical RefleXion Linac.

Methods: The X1 produces a 6 MV photon beam and the maximum clinical field size is 40 × 2 cm at source-to-axis distance of 85 cm. Treatment fields are collimated by a binary multileaf collimator (MLC) system with 64 leaves with width of 0.625 cm and y-jaw pairs to provide either a 1 or 2 cm opening. The mechanical alignment of the radiation source, the y-jaw, and MLC were checked with film and ion chambers. The beam parameters were characterized using a diode detector in a compact water tank. In-air lateral profiles and in-water percentage depth dose (PDD) were measured for beam modeling of the treatment planning system (TPS). The lateral profiles, PDDs, and output factors were acquired for field sizes from 1.25 × 1 to 40 × 2 cm field to verify the beam modeling. The rotational output variation and synchronicity were tested to check the gantry angle, couch motion, and gantry rotation.

Results: The source misalignments were 0.049 mm in y-direction, 0.66% out-of-focus in x-direction. The divergence of the beam axis was 0.36 mm with a y-jaw twist of 0.03°. Clinical off-axis treatment fields shared a common center in y-direction were within 0.03 mm. The MLC misalignment and twist were 0.57 mm and 0.15°. For all measured fields ranging from the size from 1.25 × 1 to 40 × 2 cm , the mean difference between measured and TPS modeled PDD at 10 cm depth was -0.3%. The mean transverse profile difference in the field core was -0.3% ± 1.1%. The full-width half maximum (FWHM) modeling was within 0.5 mm. The measured output factors agreed with TPS within 0.8%.

Conclusions: This study summarizes our specific experience commissioning the first novel RefleXion linac, which may assist future users of this technology when implementing it into their own clinics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9194984PMC
http://dx.doi.org/10.1002/acm2.13607DOI Listing

Publication Analysis

Top Keywords

beam commissioning
8
commissioning clinical
8
treatment fields
8
lateral profiles
8
beam modeling
8
output factors
8
125 × 1 40 × 2 cm
8
beam
7
clinical
4
clinical biology-guided
4

Similar Publications

Study Design: Narrative review of existing literature.

Objectives: Significant technological advancements in radiotherapy planning and delivery have enabled new radiotherapy techniques for the management of spine tumors. The objective of this study was to provide a comprehensive summary of these treatment techniques for practicing spine surgeons.

View Article and Find Full Text PDF

Background: A comprehensive analysis of the occlusal plane (OP) inclination in predicting anteroposterior mandibular position (APMP) changes is still lacking. This study aimed to analyse the relationships between inclinations of different OPs and APMP metrics and explore the feasibility of OP inclination in predicting changes in APMP.

Methods: Overall, 115 three-dimensional (3D) models were reconstructed using deep learning-based cone-beam computed tomography (CBCT) segmentation, and their accuracy in supporting cusps was compared with that of intraoral scanning models.

View Article and Find Full Text PDF

On the correction factors for small field dosimetry in 1.5T MR-linacs.

Phys Med Biol

January 2025

Medical Physics Laboratory, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, Athens, Attica, 11527, GREECE.

Clinical dosimetry in the presence of a 1.5T magnetic field is challenging, let alone in case small fields are involved. The scope of this study is to determine a set of relevant correction factors for a variety of MR-compatible detectors with emphasis on small fields.

View Article and Find Full Text PDF

Proximity of maxillary molar palatal roots to adjacent structures for endodontic microsurgery: a cone-beam computed tomography study.

BMC Oral Health

January 2025

Beijing Yakebot Technology Co., Ltd, F-616-West Building, Yonghe Plaza, No. 28 Andingmen Dongdajie, DongCheng District, Beijing, 100007, China.

Background: The surgical complexity associated with the palatal roots of maxillary molars was considerably elevated. Previous studies on the relationships between maxillary molar roots and the maxillary sinus or cortical plates have focused on individual root observation without considering the positional relationship between buccal and palatal roots or analysing the surgical pathway of maxillary molar palatal roots. This study aimed to investigate the relationship between maxillary molar palatal roots and adjacent anatomical structures to provide a reference for performing palatal roots endodontic microsurgery.

View Article and Find Full Text PDF

The compact line-focus X-ray tube for microbeam radiation therapy - Focal spot characterisation and collimator design.

Phys Med

January 2025

Department of Radiation Oncology, TUM School of Medicine and Health and Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich (TUM), Munich, Germany; Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany; Forschungs-Neutronenquelle Heinz Maier-Leibnitz Zentrum (FRM II), Technical University of Munich (TUM), Garching, Germany.

Purpose: Microbeam radiation therapy (MRT) has shown superior healthy tissue sparing at equal tumour control probabilities compared to conventional radiation therapy in many preclinical studies. The limitation to preclinical research arises from a lack of suitable radiation sources for clinical application of MRT due to high demands on beam quality. To overcome these limitations, we developed and built the first prototype of a line-focus X-ray tube (LFXT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!