A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Lysine Dipeptide Enhances Gut Structure and Whole-Body Protein Synthesis in Neonatal Piglets with Intestinal Atrophy. | LitMetric

Background: Parenteral nutrition (PN) is often a necessity for preterm infants; however, prolonged PN leads to gut atrophy, weakened gut barrier function, and a higher risk of intestinal infections. Peptide transporter-1 (PepT1) is a di- or tripeptide transporter in the gut and, unlike other nutrient transporters, its activity is preserved with the onset of intestinal atrophy from PN. As such, enteral amino acids in the form of dipeptides may be more bioavailable than free amino acids when atrophy is present.

Objectives: In Yucatan miniature piglets with PN-induced intestinal atrophy, we sought to determine the structural and functional effects of enteral refeeding with lysine as a dipeptide, compared to free L-lysine.

Methods: Piglets aged 7-8 days were PN-fed for 4 days to induce intestinal atrophy, then were refed with enteral diets with equimolar lysine supplied as lysyl-lysine (Lys-Lys; n = 7), free lysine (n = 7), or Lys-Lys with glycyl-sarcosine (n = 6; to determine whether competitive inhibition of Lys-Lys uptake would abolish PepT1-mediated effects). The diets provided lysine at 75% of the requirement and were gastrically delivered for a total of 18 hours. Whole-body and tissue-specific protein synthesis, as well as indices for gut structure and barrier function, were measured.

Results: The villus height, mucosal weight, and free lysine concentration were higher in the Lys-Lys group compared to the other 2 groups (P < 0.05). Lysyl-lysine led to greater whole-body protein synthesis compared to free lysine (P < 0.05). Mucosal myeloperoxidase activity was lower in the Lys-Lys group (P < 0.05), suggesting less inflammation. The inclusion of glycyl-sarcosine with Lys-Lys abolished the dipeptide effects on whole-body and tissue-specific protein synthesis (P < 0.05), suggesting that improved lysine availability was mediated by PepT1.

Conclusions: Improved intestinal structure and whole-body protein synthesis suggests that feeding strategies designed to exploit PepT1 may help to avoid adverse effects when enteral nutrition is reintroduced into the compromised guts of neonatal piglets.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jn/nxac095DOI Listing

Publication Analysis

Top Keywords

protein synthesis
20
intestinal atrophy
16
whole-body protein
12
free lysine
12
lysine
8
lysine dipeptide
8
gut structure
8
structure whole-body
8
neonatal piglets
8
barrier function
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!