A microreactor sealing method using adhesive tape for digital bioassays.

Lab Chip

Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.

Published: May 2022

Digital assays using microreactors fabricated on solid substrates are useful for carrying out sensitive assays of infectious diseases and other biological tests. However, sealing of the microchambers using fluid oil is difficult for non-experts, and thus hinders the widespread use of digital microreactor assays. Here, we propose the physical isolation of tiny reactors with adhesive tape (PITAT) using simple, commercially available pressure-sensitive adhesive (PSA) tape as a separator of the microreactors. We confirmed that PSA tape can effectively seal the microreactors and prevent molecules from diffusing out. By testing several types of adhesive tape, we found that rubber-based adhesives are the most suitable for this purpose. In addition, we demonstrated that single-molecule enzyme assays can be successfully performed inside microreactors sealed with PSA tape. The results obtained using PITAT are quantitatively comparable to conventional oil sealing, although it is quick and cost-effective. Finally, we demonstrated that single-particle virus counting of the influenza virus can be achieved using PITAT. Collectively, our results suggest that PITAT may be suitable for use in the design of sensitive tests for infectious diseases at the point of care, where no sophisticated equipment or machines are available.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2lc00065bDOI Listing

Publication Analysis

Top Keywords

adhesive tape
12
psa tape
12
infectious diseases
8
tape pitat
8
tape
6
microreactor sealing
4
sealing method
4
adhesive
4
method adhesive
4
tape digital
4

Similar Publications

A novel method for assessing the shedding of fibre in forensic science: Investigating the effects of washing.

Forensic Sci Int

January 2025

Leverhulme Research Centre for Forensic Science, Department of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK.

The evaluation of the shedding capacity of a garment is crucial in forensic analysis to understand fibre transfer mechanisms during contact activities. While adhesive tapes are commonly used, the lack of standardised pressure application -often done manually- poses a challenge. In addition, while previous studies have examined the effects of washing on fibre evidence, there is a notable absence in the literature regarding its impact on garment shedding capacity.

View Article and Find Full Text PDF

Robust, Fluorine-Free Superhydrophobic Films on Glass via Epoxysilane Pretreatment.

Langmuir

January 2025

Materials Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.

Durable and fluorine-free superhydrophobic films were fabricated by a simple two-step process involving the pretreatment of glass substrates with an epoxysilane, which acted as an adhesive. The next step involved the aerosol-assisted chemical vapor deposition of a simple mixture of polydimethylsiloxane (PDMS) and SiO nanoparticles (NPs). Various parameters were studied, such as deposition time as well as PDMS and SiO loadings.

View Article and Find Full Text PDF

Fingermarks are important forensic evidence for identifying people. In this work, luminescent MOF [Eu(BDC)(HO)] (herein referred as EuBDC) was tested as a potential latent fingermark (LF) luminescent developer powder and its acute toxicity evaluated following OECD protocol 423. The results showed that the powder can develop groomed LF on materials such as leather, plastic, metal, glass, cardboard, and aluminum.

View Article and Find Full Text PDF

Prevalence, Risk Factors, Causes, Assessments, and Prevention of Medical Adhesive-Related Skin Injury: A Scoping Review.

Adv Skin Wound Care

January 2025

In the Oncology Department of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China, Meichen Du, MD, is Senior Practical Nurse and Mei Liu, MD, is Head Nurse.

Objective: To evaluate research on medical adhesive-related skin injury (MARSI), focusing on its incidence, prevalence, risk factors, causes, assessments, and prevention.

Data Sources: Searches were conducted on Wanfang Data, China National Knowledge Infrastructure, PubMed, Web of Science Core Collection, MEDLINE, EMBASE, and the Cumulative Index of Nursing and Allied Health Literature Plus with Full Text.

Study Selection: Using search terms "medical adhesive related skin injury", "MARSI", "adhesive skin injury", and "medical tape-induced skin injury", the authors selected 43 original articles published between January 1, 2001, and May 12, 2022, in English or Chinese.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!