Nearly 40% of the advanced cancer patients will present brain metastases during the course of their disease, with a 2-year life expectancy of less than 10%. Immune system impairment, including the modulation of both STAT3 and PD-L1, is one of the hallmarks of brain metastases. Liquid biopsy could offer several advantages in brain metastases management, such as the possibility of noninvasive dynamic monitoring. Extracellular vesicles (EVs) have been recently proposed as novel biomarkers especially useful in liquid biopsy due to their secretion in biofluids and their role in cell communication during tumor progression. The main aim of this work was to characterize the size and protein cargo of plasma circulating EVs in patients with solid tumors and their correlation with newly diagnosed brain metastases, in addition to their association with other relevant clinical variables. We analyzed circulating EVs in the plasma of 123 patients: 42 patients with brain metastases, 50 without brain metastases and 31 healthy controls. Patients with newly diagnosed brain metastases had a lower number of circulating EVs in the plasma and a higher protein concentration in small EVs (sEVs) compared to patients without brain metastases and healthy controls. Interestingly, melanoma patients with brain metastases presented decreased STAT3 activation and increased PD-L1 levels in circulating sEVs compared to patients without central nervous system metastases. Decreased STAT3 activation and increased PD-L1 in plasma circulating sEVs identify melanoma patients with brain metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037466PMC
http://dx.doi.org/10.1080/2162402X.2022.2067944DOI Listing

Publication Analysis

Top Keywords

brain metastases
36
patients brain
16
plasma circulating
12
newly diagnosed
12
diagnosed brain
12
circulating evs
12
brain
11
patients
10
metastases
10
extracellular vesicles
8

Similar Publications

Purpose: In CheckMate 204, nivolumab + ipilimumab showed high intracranial (IC) objective response rates (icORRs) in patients with melanoma brain metastases (MBMs). Using icORR as a surrogate for overall survival (OS) has prompted use of alternate response criteria. To set the stage for harmonized MBM trials, the aim of this exploratory analysis was to determine icORR using several response criteria and examine correlations of response with survival.

View Article and Find Full Text PDF

Background: The SEER Registry contains U.S. cancer statistics.

View Article and Find Full Text PDF

The Role of Radiotherapy in the Management of Melanoma Brain Metastases: An Overview.

Curr Treat Options Oncol

January 2025

Ella Lemelbaum Institute for Immuno Oncology, Chaim Sheba Medical Center, 6997801, Tel Aviv, Israel.

Clinical management of melanoma brain metastases is complex and requires multidisciplinary approach. With close collaboration between neurosurgeons, radiation oncologists and medical oncologists, melanoma patients with brain are offered different treatment modalities: surgery, radiation therapy, systemic therapy or combined treatments. Radiation therapy (whole brain radiotherapy- WBRT and stereotactic radiosurgery- SRS) is an integral part of treating melanoma brain metastases.

View Article and Find Full Text PDF

In recent years, it has been increasingly recognized that tumor growth relies not only on support from the surrounding microenvironment but also on the tumors capacity to adapt to - and actively manipulate - its niche. While targeting angiogenesis and modulating the local immune environment have been explored as therapeutic approaches, these strategies have yet to yield effective treatments for brain tumors and remain under refinement. More recently, the nervous system itself has been explored as a critical environmental support for cancer, with extensive neuro-tumoral interactions observed both intracranially and in extracranial sites containing neural components.

View Article and Find Full Text PDF

Glioma is characterized by high heterogeneity and poor prognosis. Attempts have been made to understand its diversity in both genetic expressions and radiomic characteristics, while few integrated the two omics in predicting survival of glioma. This study was intended to investigate the connection between glioma imaging and genome, and examine its predictive value in glioma mortality risk and tumor immune microenvironment (TIME).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!