In this study, we evaluated 3444 Latin American natural products using cheminformatic tools. We also characterized 196 compounds for the first time from the flora of El Salvador that were compared with the databases of secondary metabolites from Brazil, Mexico, and Panama, and 42 969 compounds (natural, semi-synthetic, synthetic) from different regions of the world. The overall analysis was performed using drug-likeness properties, molecular fingerprints of different designs, two parameters similarity, molecular scaffolds, and molecular complexity metrics. It was found that, in general, Salvadoran natural products have a large diversity based on fingerprints. Simultaneously, those belonging to Mexico and Panama present the greatest diversity of scaffolds compared to the other databases. This study provided evidence of the high structural complexity that Latin America's natural products have as a benchmark. The COVID-19 pandemic has had a negative effect on a global level. Thus, in the search for substances that may influence the coronavirus life cycle, the secondary metabolites from El Salvador and Panama were evaluated by docking against the endoribonuclease NSP-15, an enzyme involved in the SARS CoV-2 viral replication. We propose in this study three natural products as potential inhibitors of NSP-15.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030473 | PMC |
http://dx.doi.org/10.1039/d1ra01507a | DOI Listing |
Front Microbiol
December 2024
Jimma University Laboratory of Drug Quality (JuLaDQ) and School of Pharmacy, Jimma University, Jimma, Oromia, Ethiopia.
Background: Pharmaceuticals are expected to improve human and animal health, but improper management and regulation have led to adverse effects such as reproductive disorders, antibiotic resistance, and biodiversity loss in ecosystems. Their presence in the environment poses significant risks, including a reduction in biodiversity, reproductive issues, and the development of antimicrobial resistance. This review aims to examine the occurrence and sources of pharmaceuticals in the environment and their ecotoxicological and regulatory aspects, with a focus on Ethiopia.
View Article and Find Full Text PDFBioact Mater
April 2025
School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei, 230011, PR China.
Oxidative stress, dysbiosis, and immune dysregulation have been confirmed to play pivotal roles in the complex pathogenesis of inflammatory bowel disease (IBD). Herein, we design copper ion-luteolin nanocomplexes (CuL NCs) through a metal-polyphenol coordination strategy, which plays a multifaceted role in the amelioration of IBD. The fabricated CuL NCs function as therapeutic agents with exceptional antioxidant and anti-inflammatory capabilities because of their great stability and capacity to scavenge reactive oxygen species (ROS).
View Article and Find Full Text PDFChem Sci
December 2024
Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 P. R. China
The prevalence of naphthalene compounds in biologically active natural products, organic ligands and approved drugs has motivated investigators to develop efficient strategies for their selective synthesis. C-H functionalization of naphthalene has been frequently deployed, but mainly involves two-component reactions, while multiple-component C-H functionalization for the synthesis of naphthalene compounds has thus far proven elusive. Herein, we disclose a versatile three-component protocol for the modular synthesis of multifunctional naphthalenes from readily available simple naphthalenes, olefins and alkyl bromides P(iii)-assisted ruthenium-catalyzed remote C-H functionalization.
View Article and Find Full Text PDFInt J Food Sci
December 2024
Department of Biotechnology and Food Technology, Tshwane University of Technology, Pretoria, South Africa.
The development of alternative proteins derived from fungi-based sources is gaining recognition due to their health benefits and lower environmental impact, compared to traditional animal-based sources. In this study, we investigated the culture conditions for mycelia, focusing on the nutritional requirements and yield optimization using solid surface culture and liquid-state culture methods. Our findings indicate that optimal culture conditions involve glucose as the primary carbon source, with an initial pH of 6.
View Article and Find Full Text PDFCureus
December 2024
Pharmaceutical Biotechnology and Microbiology, Vidya Herbs USA, Bunnell, USA.
Purple tea ( var. ) is a distinct variety of known for its bioactive compounds, including caffeine, catechins, and a unique compound called 1,2-di-Galloyl-4,6-Hexahydroxydiphenoyl-β-D-Glucose, (GHG) found predominantly in purple tea leaves, which shows potential in obesity management. Studies have indicated that these bioactive compounds play a significant role in reducing BMI and body weight among obese patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!