With the recent climate warming, tundra ecotones are facing a progressive acceleration of spring snowpack melting and extension of the growing season, with evident consequences to vegetation. Along with summer temperature, winter precipitation has been recently recognised as a crucial factor for tundra shrub growth and physiology. However, gaps of knowledge still exist on long-living plant responses to different snowpack duration, especially on how intra-specific and year-to-year variability together with multiple functional trait adjustments could influence the long-term responses. To fill this gap, we conducted a 3 years snow manipulation experiment above the Alpine treeline on the typical tundra species , the conifer with the widest distributional range in the north emisphere. We tested shoot elongation, leaf area, stomatal density, leaf dry weight and leaf non-structural carbohydrate content of plants subjected to anticipated, natural and postponed snowpack duration. Anticipated snowpack melting enhanced new shoot elongation and increased stomatal density. However, plants under prolonged snow cover seemed to compensate for the shorter growing period, likely increasing carbon allocation to growth. In fact, these latter showed larger needles and low starch content at the beginning of the growing season. Variability between treatments slightly decreased over time, suggesting a progressive acclimation of juniper to new conditions. In the context of future warming scenarios, our results support the hypothesis of shrub biomass increase within the tundra biome. Yet, the picture is still far from being complete and further research should focus on transient and fading effects of changing conditions in the long term.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037292 | PMC |
http://dx.doi.org/10.3389/fpls.2022.822901 | DOI Listing |
Ecol Evol
January 2025
Wildlife Research Division Environment and Climate Change Canada Ottawa Ontario Canada.
For birds breeding in the Arctic, nest success is affected by the timing of nest initiation, which is partially determined by local conditions such as snow cover. However, conditions during the non-breeding season can carry over to affect the timing of breeding. We used tracking and breeding data from 248 individuals of 8 species and subspecies of Arctic-breeding shorebirds to estimate how the timing of nest initiation is related to local conditions like snowmelt phenology versus prior conditions, measured by the timing and speed of migration.
View Article and Find Full Text PDFCommun Biol
January 2025
Dept of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, USA.
Grasslands cover approximately a third of the Earth's land surface and account for about a third of terrestrial carbon storage. Yet, we lack strong predictive models of grassland plant biomass, the primary source of carbon in grasslands. This lack of predictive ability may arise from the assumption of linear relationships between plant biomass and the environment and an underestimation of interactions of environmental variables.
View Article and Find Full Text PDFJ Anim Ecol
January 2025
Section of Ecology, Department of Biology, University of Turku, Turku, Finland.
The hoarding behaviour of animals has evolved to reduce starvation risk when food resources are scarce, but effects of food limitation on survival of hoarding animals is poorly understood. Eurasian pygmy owls (Glaucidium passerinum) hoard small mammals and birds in natural cavities and nest boxes in late autumn for later use in the following winter. We studied the relative influence of the food biomass in hoards of pygmy owls on their over-winter and over-summer apparent survival.
View Article and Find Full Text PDFSci Data
January 2025
ESA-ESRIN, Frascati, Rome, Italy.
Sea ice thickness is an essential variable to understand and forecast the dynamic ice cover and can be estimated by satellite altimetry. Nevertheless, it is affected by uncertainties especially from snow depth, a key parameter to derive it from ice freeboard. We developed a snow depth product based on the differences between CryoSat-2 SAR Ku and IceSat-2 laser altimeters which have different snow penetration capabilities.
View Article and Find Full Text PDFNat Commun
January 2025
Centro de Astrobiologia (CAB), INTA-CSIC, Torrejón de Ardoz, Madrid, Spain.
Microorganisms are present in snow/ice of the Antarctic Plateau, but their biogeography and metabolic state under extreme local conditions are poorly understood. Here, we show the diversity and distribution of microorganisms in air (1.5 m height) and snow/ice down to 4 m depth at three distant latitudes along a 2578 km transect on the East Antarctic Plateau on board an environmentally friendly, mobile platform.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!