CRISPR/Cas-mediated genome editing is a powerful approach to accelerate yield enhancement to feed growing populations. Most applications focus on "negative regulators" by targeting coding regions and promoters to create nulls or weak loss-of-function alleles. However, many agriculturally important traits are conferred by gain-of-function alleles. Therefore, creating gain-of-function alleles for "positive regulators" by CRISPR will be of great value for crop improvement. CYP78A family members are the positive regulators of organ weight and size in crops. In this study, we engineered allelic variation by editing tomato promoter around a single-nucleotide polymorphism (SNP) that is highly associated with fruit weight. The SNP was located in a conserved putative -regulatory element (CRE) as detected by the homology-based prediction and the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq). Twenty-one mutant alleles with various insertion and deletion sizes were generated in the LA1589 background. Five mutant alleles ( , , , , and ) showed a consistent increase in fruit weight and a significant decrease in the proportion of small fruits in all experimental evaluations. Notably, and homozygote significantly increase fruit weight by 10.7-15.7 and 8.7-16.3%, respectively. Further analysis of fruit weight based on fruit position on the inflorescence indicated that the five beneficial alleles increase the weight of all fruits along inflorescence. We also found that allele types and transcriptional changes of were poor predictors of the changes in fruit weight. This study not only provides a way of identifying conserved CRE but also highlights enormous potential for CRISPR/Cas-mediated -engineering of CYP78A members in yield improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037380PMC
http://dx.doi.org/10.3389/fpls.2022.879642DOI Listing

Publication Analysis

Top Keywords

fruit weight
24
weight
8
-regulatory element
8
tomato promoter
8
gain-of-function alleles
8
mutant alleles
8
increase fruit
8
alleles
6
fruit
6
increasing fruit
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!