[This corrects the article DOI: 10.1039/D1RA08530A.].
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027242 | PMC |
http://dx.doi.org/10.1039/d2ra90027k | DOI Listing |
Langmuir
December 2024
Department of Chemistry, School of Physical Chemical and Applied Sciences, Pondicherry University, Puducherry 605014, India.
The electrochemical CO reduction reaction (CORR) is a promising approach to alleviating global warming and emerging energy crises. Yet, the CORR efficiency is impeded by the need for electrocatalysts with good selectivity and efficiency. Recently, single-atom catalysts (SACs) have attracted much attention in electrocatalysis and are more efficient than traditional metal-based catalysts.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran.
This study explores the influence of Fe ion incorporation on the oxygen-evolution reaction (OER) in alkaline media, utilizing CuO-based materials. Instead of developing an efficient and stable OER catalyst, this research investigates two distinct CuO variants: one with Fe ions adhered to the surface and another with Fe ions integrated into the CuO lattice. By employing a variety of analytical techniques, the study demonstrates that the CuO variant with surface-bound Fe ions (referred to as compound 1) exhibits significantly enhanced OER performance compared to the variant with internally embedded Fe ions (referred to as compound 2).
View Article and Find Full Text PDFACS Sens
December 2024
Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.
Fe single-atom and Fe cluster-coupled N, S co-doped carbon nanomaterials (Fe-FeO-NSC) were prepared through a two-step high-temperature pyrolysis process using Gelidium corneum enriched with C, Fe, O, N, and S as precursors. The analysis by aberration-corrected scanning transmission electron microscopy and X-ray absorption spectroscopy revealed the presence of single-atom Fe in Fe-N coordination structures, along with small clusters as Fe-O-coordinated FeO. Single-atom Fe in the form of Fe/Fe provides more electrocatalytic active sites, which synergistically accelerates the charge migration process in the assembly of Fe-FeO-NSC with FeO clusters.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
College of Material Science and Engineering, Sichuan University, Chengdu 610065, China; The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China. Electronic address:
The controlled modulation of surface functional groups, in conjunction with the intrinsic structural characteristics of MXene materials, shows great potential in alleviating the shuttle effect and improving the sluggish reaction kinetics in lithium-sulfur batteries (LSBs). This study delves into the impact of surface functional groups (T = O, S, F, and Cl) on VB MBene concerning sulfur immobilization and kinetic catalytic properties through meticulous first-principles calculations. The results reveal that the establishment of T-Li bonds within VBT (T = O, S, F, and Cl) enhances the adsorption of lithium polysulfides (LiPSs).
View Article and Find Full Text PDFNat Commun
September 2024
Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!