AI Article Synopsis

  • The study aimed to explore how β-cyclodextrin interacts with water, focusing on adsorption characteristics like capacity, rate, and heat while using various analytical methods.
  • Results revealed that the adsorption of water is exothermic and influenced by structural effects, indicating a complex interaction beyond traditional physical adsorption.
  • Water adsorbs to β-cyclodextrin more easily than it desorbs, with an average intermolecular interaction strength of 67.5 kJ/mol confirmed through differential scanning calorimetry (DSC).

Article Abstract

This study focused on demonstrating the intermolecular interactions between β-cyclodextrin and water, with the aim to better understand the transfer of small molecules to β-cyclodextrin. The intermolecular interaction strength between β-cyclodextrin and water was analyzed using different methods such as the dynamic adsorption of water, the TG-DSC of β-cyclodextrin and molecular modeling employing MM2 force field calculations. The experiments for the adsorption of water on β-cyclodextrin was aimed to systematically investigate the adsorption characteristics, such as adsorption capacity, adsorption rate, adsorption heat and activation energy, influenced by the adsorption temperature and vapor pressure of water. The results indicated that the water adsorption on β-cyclodextrin is an exothermic process. The hysteresis loop type in the adsorption isotherms at multiple temperatures indicated that water adsorption is not purely a traditional physical adsorption due to the existence of structure effects such as the cavity effect and hydrogen bonding. The activation energy during water adsorption was 7.4 kJ mol. However, the activation energy during water desorption was in the range of 35-45 kJ mol, which decreased with an increase in the amount of water adsorbed. This indicated that water adsorption is much easier than water desorption from β-cyclodextrin and that water desorption is more difficult with a small amount of adsorbed water compared with a large amount of adsorbed water. Subsequently, the obtained average intermolecular interaction strength between β-cyclodextrin and water under the experimental conditions was 67.5 kJ mol (water), which was verified by DSC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037024PMC
http://dx.doi.org/10.1039/d1ra03960aDOI Listing

Publication Analysis

Top Keywords

β-cyclodextrin water
20
water
18
water adsorption
16
adsorption
13
activation energy
12
indicated water
12
water desorption
12
β-cyclodextrin
9
intermolecular interactions
8
interactions β-cyclodextrin
8

Similar Publications

Shape-Dependent Structural Order of Red Blood Cells.

Langmuir

January 2025

Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.

In this work, we show how shape matters for the ordering of red blood cells (RBCs) at a water-air interface for both artificially rigidified and sphered cells as a model system for hereditary spherocytosis. We report enhanced long-range order for spherical RBCs over disk-shaped RBCs arising from the increased local ordering of spheres relative to disks. We show that rigidity has a greater effect on the radial distribution of spherical vs disk-shaped RBCs by slightly increasing the average distance between cells.

View Article and Find Full Text PDF

UV-Aged Nanoplastics Increase Mercury Toxicity in a Marine Copepod under Multigenerational Exposure: A Carrier Role.

Environ Sci Technol

January 2025

Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.

Aged plastics possess diverse interactive properties with metals compared to pristine ones. However, the role of aging for nanoplastics (NPs) in being a carrier of mercury (Hg), a common marine environmental pollutant, and their combined effects remain unclear. This study investigated the carrier effect of ultraviolet-aged NPs on Hg and the ensuing toxicity in a marine copepod under a multigenerational scenario.

View Article and Find Full Text PDF

The removal of antimony from wastewater using traditional methods such as adsorption and membrane filtration generates large amounts of antimony-containing hazardous wastes, posing significant environmental threats. This study proposed a new treatment strategy to reductively remove and recover antimony from wastewater using an advanced UV/sulfite reduction process in the form of valuable strategic metalloid antimony (Sb(0)), thus preventing hazardous waste generation. The results indicated that more than 99.

View Article and Find Full Text PDF

Molecular Mechanisms of Humic Acid in Inhibiting Silica Scaling during Membrane Distillation.

Environ Sci Technol

January 2025

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.

Membrane distillation (MD) efficiently desalinizes and treats high-salinity water as well as addresses the challenges in handling concentrated brines and wastewater. However, silica scaling impeded the effectiveness of MD for treating hypersaline water and wastewater. Herein, the effects of humic acid (HA) on silica scaling behavior during MD are systematically investigated.

View Article and Find Full Text PDF

Effect of Reaction Interface Structure on the Morphology and Performance of Thin-Film Composite Membrane.

Environ Sci Technol

January 2025

Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China.

Thin-film composite (TFC) membrane has been extensively utilized and investigated for its excellent properties. Herein, we have constructed an active layer (AL) containing cave-like structures utilizing large meniscus interface. Furthermore, the impact of interface structure on the growth process, morphology, and effective surface area of AL has been fully explored with the assistance of sodium dodecyl benzenesulfonate (SDBS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!