Proton-exchange membrane fuel cells (PEMFCs) have received great attention as a potential alternative energy device for internal combustion engines due to their high conversion efficiency compared to other fuel cells. The main hindrance for the wide commercial adoption of PEMFCs is the high cost, low proton conductivity, and high fuel permeability of the state-of-the-art Nafion membrane. Typically, to improve the Nafion membrane, a wide range of strategies have been developed, in which efforts on the incorporation of carbon nanomaterial (CN)-based fillers are highly imperative. Even though many research endeavors have been achieved in relation to CN-based fillers applicable for Nafion, still their collective summary has rarely been reported. This review aims to outline the mechanisms involved in proton conduction in proton-exchange membranes (PEMs) and the significant requirements of PEMs for PEMFCs. This review also emphasizes the improvements achieved in the proton conductivity, fuel barrier properties, and PEMFC performance of Nafion membranes by incorporating carbon nanotubes, graphene oxide, and fullerene as additives.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033471 | PMC |
http://dx.doi.org/10.1039/d1ra00685a | DOI Listing |
Dalton Trans
January 2025
Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Arama-ki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan.
A new approach for hydrogen isotope separation using an unsaturated organometallic complex was proposed. Adsorption measurements of [Mn(dppe)(CO)(N)](BArF) (Mn-dppe) (dppe = 1,2-bis(diphenylphosphino)ethane, BArF = B[CH(3,5-CF)]) using H and D revealed a significant difference in the adsorption enthalpy of H/D at much higher room temperatures than in previous studies, with D molecules being more strongly adsorbed on unsaturated metal sites. Mixed gas adsorption isotherms were calculated at each temperature using IAST, and it was predicted that D uptake was much larger than H uptake.
View Article and Find Full Text PDFPLoS One
January 2025
International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
In remote areas, visiting a laboratory for sleep testing is inconvenient. We, therefore, developed a Mobile Sleep Lab in a bus powered by fuel cells with two sleep measurement chambers. As the environment in the bus could affect sleep, we examined whether sleep testing in the Mobile Sleep Lab was as feasible as in a conventional sleep laboratory (Human Sleep Lab).
View Article and Find Full Text PDFExp Mol Med
January 2025
Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Altruism, an act of benefiting others at a cost to the self, challenges our understanding of evolution. This Perspective delves into the importance of altruism in cancer cells and its implications for therapy. Against the backdrop of existing knowledge on various social organisms found in nature, we explore the mechanisms underlying the manifestation of altruism within breast tumors, revealing a complex interplay of seemingly counteracting cancer signaling pathways and processes that orchestrate the delicate balance between cost and benefit underlying altruistic cooperation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada.
One of the key technical challenges before the widespread adoption of proton exchange membrane fuel cells (PEMFCs) is increasing the durability of the platinum catalyst layer to meet a target of 8000 operating hours with only a 10% loss of performance. Carbon corrosion, one of the primary mechanisms of degradation in fuel cells, has attracted attention from researchers interested in solving the durability problem. As such, the development of catalyst supports to avoid this issue has been a focus in recent years, with interest in hydrophobic supports such as highly graphitized carbons.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Adamant Composites Ltd., Agias Lavras & Stadiou, 26504 Patras, Greece.
Hydrogen, as a zero-emission fuel, produces only water when used in fuel cells, making it a vital contributor to reducing greenhouse gas emissions across industries like transportation, energy, and manufacturing. Efficient hydrogen storage requires lightweight, high-strength vessels capable of withstanding high pressures to ensure the safe and reliable delivery of clean energy for various applications. Type V composite pressure vessels (CPVs) have emerged as a preferred solution due to their superior properties, thus this study aims to predict the performance of a Type V CPV by developing its numerical model and calculating numerical burst pressure (NBP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!