Two new monoterpene indole alkaloid glycosides nutanoside A-B (1-2), two new phenolic glycoside esters nutanester A-B (6-7), together with five known compounds (3-5, 8-9) were isolated from the ethanol extract of Siebold & Zuccarini. Their structures were established on the basis of extensive spectroscopic analysis and TDDFT/ECD calculations. Compounds 1 and 2 are two rare monoterpene indole alkaloids with the glucosyl moiety located at C-12 and represent the first two examples of enantiomer of ajmaline type monoterpene indole alkaloids. Compounds 3, 4 and 6 displayed significant inhibitory effects on NO production in over-activated BV2 microglial cells, with the IC values of 2.29, 6.36, and 8.78 μM, respectively. Compounds 1, 5, 7 could significantly inhibit the mRNA expression of inflammatory factors TNF-α and IL-6 induced by LPS in BV2 microglial cells at the effective concentration. Moreover, compound 3 exhibited stronger cytotoxicities against U87 and HCT116 cell lines than taxol with IC values of 10.58 and 14.60 μM, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037802PMC
http://dx.doi.org/10.1039/d1ra05204gDOI Listing

Publication Analysis

Top Keywords

monoterpene indole
12
siebold zuccarini
8
indole alkaloids
8
bv2 microglial
8
microglial cells
8
neuroinflammatory inhibitors
4
inhibitors siebold
4
zuccarini monoterpene
4
indole alkaloid
4
alkaloid glycosides
4

Similar Publications

Revealing the roles of solar withering and shaking processes on oolong tea manufacturing from transcriptome and volatile profile analysis.

Food Res Int

February 2025

Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan; Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan. Electronic address:

Solar and indoor withering in the manufacturing process of semi-fermented oolong tea are crucial for aroma formation. While the processes have been established through accumulated experience, the underlying mechanisms remain largely unknown. This study identified pairs of gene and volatile organic compound (VOC) that were significantly correlated and up-regulated during solar withering and the first shaking, including lipoxygenase 8 (LOX8) with 3-hexenyl iso-butyrate, terpene synthase 2 (TPS2) with β-ocimene and linalool, as well as tryptophan synthase β-subunit 2 (TSB2) with indole.

View Article and Find Full Text PDF

Bis-Iridoid Glycosides and Triterpenoids from and Their Potential as Inhibitors of ACC1 and ACL.

Molecules

December 2024

Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China.

A comprehensive phytochemical investigation of the twigs/leaves and flower buds of , a rare deciduous shrub native to China, led to the isolation of 39 structurally diverse compounds. These compounds include 11 iridoid glycosides (- and -), 20 triterpenoids (, , and -), and 8 phenylpropanoids (-). Among these, amabiliosides A () and B () represent previously undescribed bis-iridoid glycosides, while amabiliosides C () and D () feature a unique bis-iridoid-monoterpenoid indole alkaloid scaffold with a tetrahydro--carboline-5-carboxylic acid moiety.

View Article and Find Full Text PDF

The complete H and C NMR assignments of a trimeric vindoline together with its individual components, dimeric vindolicine and monomeric vindoline, are performed based on a thorough analysis of the ROESY, COSY, HSQC, and HMBC spectra in combination with the state-of-the-art quantum-chemical calculations. A spatial structure of vindoline trimer is determined by means of computational conformational analysis in combination with the probability distribution map of its basic conformers. On the example of monoterpene indole alkaloid, the trimer vindoline, the present study reveals the power of modern computational NMR to perform identification and stereochemical studies of large natural compounds with some limitations, which may arise in the quantum chemical computing workflow.

View Article and Find Full Text PDF

Monoterpene indole alkaloids (MIAs) are a large, structurally diverse class of bioactive natural products. These compounds are biosynthetically derived from a stereoselective Pictet-Spengler condensation that generates a tetrahydro-β-carboline scaffold characterized by a 3 stereocenter. However, a subset of MIAs contain a non-canonical 3 stereocenter.

View Article and Find Full Text PDF

Photoinduced electron transfer enables cytochrome P450 enzyme-catalyzed reaction cycling.

Plant Physiol Biochem

December 2024

Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China. Electronic address:

Cytochrome P450 enzymes (CYPs), the members of the largest superfamily of enzymes in plant kingdom, catalyze a variety of functional group transformations involved in metabolite biosynthesis, end-product derivatization, and exogeneous molecule detoxification. Nevertheless, CYPs' functional characterization and practically industrial application have been largely encumbered by their critical dependency on the reducing equivalent for the catalytic cycling, driven by the tedious electron relay mediated by CYP reductase (CPR). Here, we report a photoinduced electron transfer system that initiates and sustains the CYP-catalyzed reaction cycling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!