Microporous polymer materials based on molecularly "stiff" structures provide intrinsic microporosity, typical micropore sizes of 0.5 nm to 1.5 nm, and the ability to bind guest species. The polyamine PIM-EA-TB contains abundant tertiary amine sites to interact hydrogen bonding to guest species in micropores. Here, quercetin and catechin are demonstrated to bind and accumulate into PIM-EA-TB. Voltammetric data suggest apparent Langmuirian binding constants for catechin of 550 (±50) × 10 M in acidic solution at pH 2 (PIM-EA-TB is protonated) and 130 (±13) × 10 M in neutral solution at pH 6 (PIM-EA-TB is not protonated). The binding capacity is typically 1 : 1 (guest : host polymer repeat unit), but higher loadings are readily achieved by host/guest co-deposition from tetrahydrofuran solution. In the rigid polymer environment, bound -quinol guest species exhibit 2-electron 2-proton redox transformation to the corresponding quinones, but only in a thin mono-layer film close to the electrode surface. Release of guest molecules occurs depending on the level of loading and on the type of guest either spontaneously or with electrochemical stimuli.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037788 | PMC |
http://dx.doi.org/10.1039/d1ra04543a | DOI Listing |
Adv Sci (Weinh)
January 2025
Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China.
Age-related macular degeneration (AMD), characterized by choroidal neovascularization (CNV), is the global leading cause of irreversible blindness. Current first-line therapeutics, vascular endothelial growth factor (VEGF) antagonists, often yield incomplete and suboptimal vision improvement, necessitating the exploration of novel and efficacious therapeutic approaches. Herein, a supramolecular engineering strategy to construct moringin (MOR) loaded α-cyclodextrin (α-CD) coated nanoceria (M@CCNP) is constructed, where the hydroxy and newly formed carbonyl groups of α-CD interact with the nanoceria surface via O─Ce conjunction and the isothiocyanate group of MOR inserts deeply into the α-CD cavity via host-guest interaction.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Tailored design of organic linkers or metal nodes can introduce desirable functionalities into metal-organic cages (MOCs), significantly expanding their potential applications. In this study, we present a viable approach for engineering acyl-type metal nodes to create interior oxygen-rich sites within MOCs, enabling specific recognition of metal ions, including radioactive contaminants, while maintaining the structural integrity of the MOCs. A novel MOC featuring a uranyl-sealed calix[4]resorcinarene (C[4]R)-based multisite cavity, referred to as UOC, is synthesized as a prototype.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
January 2025
Georgina Mace Centre for the Living Planet, Silwood Park, Ascot SL5 7PY, UK.
Current rates of habitat and biodiversity loss, and the threat they pose to ecological and economic productivity, would be considered a global emergency even if they were not occurring during a period of rapid anthropogenic climate change. Diversity at all levels of biological organization, both within and among species, and across genomes and communities, is critical for the resilience of the world's ecosystems in the face of such change. However, it remains an urgent scientific challenge to understand how biodiversity underpins these ecological outputs, how patterns of biodiversity are being affected by current threats, and how and where such biodiversity contributes most directly to human economies, well-being and social justice.
View Article and Find Full Text PDFDalton Trans
January 2025
Departamento de Física dos Materiais e Mecânica, Instituto de Física, Universidade de São Paulo, C. P. 66318, São Paulo, SP, 05508-090, Brazil.
Distortions in the porphyrin core from planarity can trigger a unique structure-property relationship, imparting its basicity, chemical stability, redox potential, and excited-state energetics, among other properties. The colour change promoted by such distortion is signed by red shifts in its electronic absorption spectra. The adsorption of guest -substituted free-base porphyrin species onto inorganic hosts, such as clay minerals (layered aluminium or magnesium silicates), is known to further promote colour changes.
View Article and Find Full Text PDFNat Commun
January 2025
Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia.
We present an efficient strategy for on-surface engineering of organic metal-free supramolecular complexes with long-term spin protection. By vacuum deposition of azafullerene (CN) monomers on a pre-deposited template layer of [10]cycloparaphenylene ([10]CPP) nanohoops on Au(111) surface we exploit the molecular shape matching between the CN and [10]CPP for the azafullerene encapsulation with nanohoops in a guest-host complexation geometry. CN⊂[10]CPP supramolecular complexes self-assemble into an extended two-dimensional hexagonal lattice yielding a high density network of stable spin-1/2 radicals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!