Podocyte damage is vital for the etiopathogenesis of diabetic nephropathy (DN). Klotho (KL), a multifunctional protein, has been demonstrated to have renoprotective effects; nevertheless, the mechanism for protective effect has not been completely elucidated. Transient receptor potential cation channel subfamily C, member 6 (TRPC6), a potential target of KL, is implicated in glomerular pathophysiology. Here, we sought to determine whether KL could protect against podocyte injury through inhibiting TRPC6 in DN. We found that high glucose (HG) triggered podocyte injury as manifested by actin cytoskeleton damage along with the downregulation of KL and Synaptopodin and the upregulation of TRPC6. KL overexpression reversed HG-induced podocytes injury, whereas cotreatment with TRPC6 activator flufenamic acid (FFA) significantly abrogated the beneficial effects conferred by KL. Moreover, KL knockdown in podocytes resulted in actin cytoskeleton impairment, decreased Synaptopodin expression, and increased TRPC6 expression. In mice, KL overexpression inhibited TRPC6 expression and attenuated diabetes-induced podocyte injury, which was accompanied by decreased albuminuria and ameliorated glomerulosclerosis. Our data provided novel mechanistic insights for KL against DN and highlighted TRPC6 as a new target for KL in podocytes to prevent DN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9038427PMC
http://dx.doi.org/10.1155/2022/1329380DOI Listing

Publication Analysis

Top Keywords

podocyte injury
16
trpc6
8
diabetic nephropathy
8
actin cytoskeleton
8
trpc6 expression
8
podocyte
5
injury
5
klotho ameliorates
4
ameliorates podocyte
4
injury targeting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!