The present report investigates the impact of a Telemedicine Service (TMS) on the management of Idiopathic Pulmonary Fibrosis (IPF) during coronavirus disease of 2019 (COVID-19) outbreak in Italy. The TMS comprised 3 phone numbers, active 12 h per day, and an email address, monitored every 4 h by trained physicians; chat- and videoconference-services were also offered. At the end of the study period, our staff contacted all patients, to get information about the final outcome (i.e. composite hospitalisations/all causes of death). Outcomes were compared with a cohort of patients who attended our unit in the same period of the previous year (when no TMS was available). 189 patients participated in the present study. From 11th March to 4th May 2020, 61% of patients made at least one TMS access, mostly by emails (53%), followed by phone calls (33%). With regard to the primary outcome, TMS patients experienced a significant lower rate of events of the 182 patients of the no-TMS cohort ( < 0.001). Specifically, a significant difference was observed for IPF hospitalisation ( < 0.001) whereas no differences were observed with regard to deaths ( = 0.64). TMS permits patients to be followed up even during COVID-19 lockdown, with an encouraging impact on outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8990874 | PMC |
http://dx.doi.org/10.1515/med-2022-0466 | DOI Listing |
Exp Physiol
January 2025
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
There is limited knowledge on diffusing capacity in scoliosis patients. It remains to be determined if impaired pulmonary diffusing capacity is mostly influenced by reduced alveolar-capillary membrane diffusing capacity (D), reduced pulmonary capillary blood volume (V) or both. This study aims to report findings from dual test gas pulmonary diffusing capacity for carbon monoxide and nitric oxide (D) with quantification of pulmonary diffusing capacity for carbon monoxide corrected for haemoglobin with a five s breath-hold (D) and nitric oxide with a five s breath-hold (D), D and V.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China.
Idiopathic pulmonary fibrosis (IPF) is a debilitating, incurable, and life-threatening disease that lacks effective therapy. The overexpression of phosphodiesterase 10A (PDE10A) plays a vital role in pulmonary fibrosis (PF). However, the impact of selective PDE10A inhibitors on the tumor growth factor-β (TGF-β)/small mother against decapentaplegic (Smad) signaling pathway remains unclear.
View Article and Find Full Text PDFRev Med Liege
January 2025
Service de Pneumologie, CHU Liège, Belgique.
Idiopathic pulmonary arterial hypertension (iPAH) is a rare, rapidly progressive disease associated with high morbidity and mortality. It is characterized by endothelial dysfunction within the pulmonary vascular bed and gradually leads to an increase in the pulmonary vascular resistances. Its non-specific symptomatology delays the diagnosis and brings the most severe forms to right ventricular failure.
View Article and Find Full Text PDFJ Bras Pneumol
January 2025
. Serviço de Pneumologia, Hospital Beneficência Portuguesa de São Paulo, São Paulo (SP) Brasil.
Elife
January 2025
Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!