CCN2, a member of the CCN family of matricellular proteins, is a key mediator and biomarker of tissue fibrosis. We previously reported that CCN2 is significantly reduced in aged human dermis, which contributes to dermal aging through the downregulation of collagen production, the major structural protein in the skin. In this study, we investigated the underlying mechanisms of the age-related downregulation of CCN2 in human skin dermal fibroblasts. Dermal fibroblasts isolation and laser-capture microdissection‒coupled RT-PCR from human skin confirmed that age-related reduction of CCN2 expression is regulated by epigenetics. Mechanistic investigation revealed that age-related reduction of CCN2 is regulated by impaired dermal fibroblast spreading/cell size, which is a prominent feature of aged dermal fibroblasts in vivo. Gain-of-function and loss-of-function analysis confirmed that age-related downregulation of CCN2 is regulated by YAP/TAZ in response to reduced cell size. We further confirmed that restoration of dermal fibroblast size rapidly reversed the downregulation of CCN2 in a YAP/TAZ-dependent manner. Finally, we confirmed that reduced YAP/TAZ nuclear staining is accompanied by loss of CCN2 in aged human skin in vivo. Our data reveal a mechanism by which age-related reduction in fibroblast spreading/size drives YAP/TAZ-dependent downregulation of CCN2 expression, which in turn contributes to loss of collagen in aged human skin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9035808PMC
http://dx.doi.org/10.1016/j.xjidi.2022.100111DOI Listing

Publication Analysis

Top Keywords

downregulation ccn2
20
dermal fibroblasts
16
human skin
16
age-related downregulation
12
ccn2 regulated
12
aged human
12
age-related reduction
12
ccn2
10
cell size
8
yap/taz-dependent manner
8

Similar Publications

Biomimetic Topological Micropattern Arrays Regulate the Heterogeneity of Cellular Fates in Lung Fibroblasts between Fibrosis and Invasion.

ACS Nano

January 2025

Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

Article Synopsis
  • Idiopathic pulmonary fibrosis (IPF) involves persistent lung tissue injury and abnormal healing, with key roles played by myofibroblasts transitioning from fibroblasts and depositing extracellular matrix (ECM).
  • Research using engineered ECM micropatterns revealed that isotropic fibroblasts exhibited invasive characteristics and high expression of specific markers, while anisotropic fibroblasts adopted a more normal remodeling phenotype.
  • The study highlights how cellular topology affects fibroblast behavior and interactions with the ECM, which could contribute to worsening fibrosis and potentially create an environment that promotes cancer development.
View Article and Find Full Text PDF

Background: Fibrosis is a principal sign of systemic sclerosis (SSc) which can affect several organs including the lung, heart, and dermis. Dermal fibroblasts of SSc patients are characterized by persistent and activated Ras and ERK1/2 signaling which stimulates extreme collagen and extracellular matrix synthesis. Salirasib is a Ras inhibitor that competitively prevents the adherence of GTP-bound Ras to the plasma membrane, that inhibits Ras signaling.

View Article and Find Full Text PDF

Background: Several new treatments have recently been shown to have heart and kidney protective benefits in people with diabetes. Because these treatments were developed in parallel, it is unclear how the different molecular pathways affected by the therapies may overlap. Here, we examined the effects of the mineralocorticoid receptor antagonist finerenone in mice with comorbid diabetes, focusing on the regulation of expression of the glucagon-like peptide-1 receptor (GLP-1R), gastric inhibitory polypeptide receptor (GIPR) and glucagon receptor (GCGR), which are targets of approved or investigational therapies in diabetes.

View Article and Find Full Text PDF

Despite public health measures, type 2 diabetes (T2D) is still a significant concern worldwide, given its associated complications, including hepatic alterations. The role of epithelial-to-mesenchymal transition (EMT) in liver fibrosis is well established. However, its effects on the progression of diabetic liver diseases are not well understood.

View Article and Find Full Text PDF

Background: Extracellular matrix protein 1 (ECM1) can inhibit TGFβ activation, but its antifibrotic action remains largely unknown. This study aims to investigate ECM1 function and its physical interaction with the profibrotic connective tissue growth factor (CTGF) in fibrosis and ductular reaction (DR).

Methods: Ecm1 knockouts or animals that ectopically expressed this gene were subjected to induction of liver fibrosis and DR by feeding 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) or α-naphthyl-isothiocyanate (ANIT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!