Photocatalysis has been considered as an environmental-friendly strategy for degradation of organic pollutants to the nontoxic products of HO and CO. Compared to metal oxide semiconductors, BiOX (X = Cl, Br and I) photocatalysts exhibit some advantages, such as, unique layered structure, good chemical stability and superior photocatalytic activity. This review provides an overview on the controllable synthesis of BiOX-based photocatalysts and their application in photodegradation of organic pollutants. Firstly, the controllable synthesis of BiOX is introduced, including hydrothermal, solvothermal, hydrolysis, precipitation, two-phase methods, ultrasonic/microwave-assisted methods, and physical methods. Then, the doping and surface modification of BiOX are summarized, including non-metal doping, metal doping, dual doping, and the modification by introducing surface terminations or carriers. In addition, the heterojunctions of BiOX/BiOY and BiOX/Bi O X are introduced. At last, the promising research trends of BiOX-based photocatalysts are put forward. The main purpose is providing practical guidelines for developing high-performance BiOX photocatalysts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037621 | PMC |
http://dx.doi.org/10.1039/d1ra05796k | DOI Listing |
Environ Sci Technol
January 2025
Environmental Engineering and Science, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, Ohio 45221, United States.
Frequent and severe occurrences of harmful algal blooms increasingly threaten human health by the release of microcystins (MCs). Urgent attention is directed toward managing MCs, as evidenced by rising HAB-related do not drink/do not boil advisories due to unsafe MC levels in drinking water. UV/chlorine treatment, in which UV light is applied simultaneously with chlorine, showed early promise for effectively degrading MC-LR to values below the World Health Organization's guideline limits.
View Article and Find Full Text PDFFront Vet Sci
December 2024
College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.
Excessive inorganic trace elements are added to livestock and poultry feed to meet the needs of animals, accompanied by frequent occurrence of excretion and gastrointestinal stress. Replacing inorganic trace elements with organic trace elements provides a promising solution to alleviate these problems. Therefore, this study aimed to assess the impact of replacing all inorganic trace elements (ITMs) in feed on the growth performance, meat quality, serum parameters, trace element metabolism, and gut microbiota of finishing pigs.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
Methylmercury in paddy soils poses threats to food security and thus human health. Redox-active phenolic and quinone moieties of natural organic matter (NOM) mediate electron transfer between microbes and mercury during mercury reduction. However, their role in mercury methylation remains elusive.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
Iodinated DBPs (I-DBPs), many more toxic than regulated chlorinated and/or brominated DBPs, are a major challenge in the supply of safe drinking water. While over 800 DBPs have been identified, the occurrence and precursors of toxic I-DBPs remain poorly understood. Herein, natural organic matter from two raw drinking waters was fractionated using ultrafiltration membranes into different groups based on molecular weight (MW).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
The State University of New York College of Environmental Science and Forestry, Syracuse, USA.
Polychlorinated biphenyls (PCBs) are persistent organic pollutants and are emitted during e-waste activities. Once they enter into the environment, PCBs could pose toxic effects to environmental compartments and public health. Reductive dechlorination offers a sustainable solution to manage the PCBs-contaminated environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!