Three fundamental concepts (aromaticity/basicity/electrophilicity), being heavily used in modern chemistry, have been applied in this work to study the chemical reactivity of six-membered-ring group 13 N-heterocyclic carbenes (G13-6-Rea; G13 = group 13 elements) using density functional theory (BP86-D3(BJ)/def2-TZVP). G13-6-Rea is isolobal to benzene. Two model reactions have been used in the present study: the insertion reaction of G13-6-Rea with methane and the [1 + 2] cycloaddition reaction of G13-6-Rea with ethene. Our theoretical analysis reveals that the chemical reactivity of B-6-Rea, Al-6-Rea, and Ga-6-Rea is governed by their HOMO (the sp-σ lone pair orbital on the G13 element), and thus they can be considered nucleophiles. Conversely, the chemical behavior of In-6-Rea and Tl-6-Rea is determined by their LUMO (the vacant p-π orbital on the G13 element), and thus they can be considered electrophiles. On the basis of the VBSCD (valence bond state correlation diagram) model and ASM (activation strain model), this theoretical evidence demonstrates that the origin of activation barriers for the above model reactions is due to the atomic radius of the pivotal group 13 element in the six-membered-ring of G13-6-Rea. Accordingly, our theoretical conclusions suggest that the lower the atomic number and the smaller the atomic radius of the G13 atom, the higher the aromaticity of the six-membered-ring of G13-6-Rea and the smaller the singlet-triplet energy splitting Δ of this N-heterocyclic carbene analogue, which will facilitate its chemical reactions. The theoretical findings originating from this study allow many predictions in experiments to be made.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033959 | PMC |
http://dx.doi.org/10.1039/d1ra02703d | DOI Listing |
Org Lett
January 2025
Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China.
Boron compounds are widely employed in organic chemistry, pharmaceuticals, and materials science. Among them, borylated heterocycles serve as versatile synthons for the construction of new C-C or C-heteroatom bonds via coupling or radical processes. Such methods for direct C-H borylation reactions are of high synthetic value to reduce the number of synthetic steps and the amount of waste and to improve efficiency.
View Article and Find Full Text PDFMolecules
December 2024
Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Montesano 49, 80131 Naples, Italy.
Silver drugs have played a vital role in human healthcare for the treatment of infections for many centuries. Currently, due to antibiotic resistance, a potential scenario or the application of silver complexes may arise as substitutes for conventional antibiotics. In this perspective, N-heterocyclic carbene (NHC) ligands have been selected as carrier molecules for silver ions.
View Article and Find Full Text PDFJ Med Chem
January 2025
Sorbonne Université, CNRS Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France.
Despite recent advances in cancer treatment, there is still a need for novel compounds with antineoplastic activity. Among 11 biphenyl-based organogold(III) -heterocyclic carbene (NHC) (BGC) complexes of general formula [(C^C)Au(NHC-pyr)X], where (C^C) = 4,4'-ditertbutylbiphenyl, X = Cl or phenylacetylide, and (NHC-pyr) is a pyridyl-substituted NHC ligand, the complex bearing a 4-CF-pyridyl substituent and a chloride ligand showed promising antineoplastic activity on the triple negative breast cancer cell line. was able to induce cell apoptosis but had no effect on the cell cycle.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry, Birla Institute of Technology Mesra, Ranchi 835215, India.
Planar hexacoordination is an extremely uncommon phenomenon for the atoms that belong to the main group. Within this article, we have analyzed the potential energy surfaces (PES) of ABeCB (A = N, P, As, Sb, and Bi) clusters in neutral, monocationic, monoanionic, dicationic, and dianionic states using density functional theory (DFT). Among which PBeCB, PBeCB, AsBeCB, AsBeCB, SbBeCB, and BiBeCB clusters contain a planar hexacoordinate boron (phB) atom in the global minimum energy structures with symmetry.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China.
Designing artificial enzymes for in vivo catalysis presents a great challenge due to biomacromolecule contamination, poor biodistribution, and insufficient substrate interaction. Herein, we developed single-chain polymeric nanoparticles with Cu/N-heterocyclic carbene active sites (SCNP-Cu) to function as peroxidase mimics for in vivo catalysis and chemo-dynamic therapy (CDT). Compared with the enzyme mimics based on unfolded linear polymer scaffold and multichain cross-linked scaffold, SCNP-Cu exhibits improved tumor accumulation and CDT efficiency both in vitro and in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!