Chromatographic separation of the solid cultures of a deep-sea-derived fungus (MCCC 3A00308) resulted in the isolation of eight compounds. Their structures were identified on the basis of the spectroscopic data. Compounds 1-8 are classified as depsidone-type (1-4), isocoumarin-type (5 and 6), and benzothiazole-type (7 and 8), of which 1-7 are new compounds and 1-3 along with 5 and 6 are chlorinated. Compound 3 is characterized by trichlorination and shows potent activities against Gram-positive pathogenic bacteria including ATCC 25923, ATCC 10792, and CMCC 63501, with minimum inhibitory concentration (MIC) values ranging from 0.5 to 1.0 μg mL. This study extends the chemical diversity of chlorinated natural products from marine-derived fungi and provides a promising lead for the development of antibacterial agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041095 | PMC |
http://dx.doi.org/10.1039/d1ra05736g | DOI Listing |
J Asian Nat Prod Res
December 2024
CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
Three new terpenoid derivatives (1,6,7)-hydrobenzosydowic acid (), (1 ,6,7)-hydrobenzosydowic acid (), and (7 ,10)-11-dehydroxy-iso-10-hydroxysydowic acid (), along with the known analogues ()-2-(1-(4-nitrobenzoyl)pyrrolidine-2-carboxamido)benzoic acid () and trihydroxybutyl ester of 4-carboxydiorcinol () were isolated from the deep-sea-derived fungus DFFSCS007. Their structures were determined by spectroscopic analysis. Compound with a nitrobenzene group was isolated from nature for the first time.
View Article and Find Full Text PDFBioorg Chem
December 2024
State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Ningbo Institute of Marine Medicine, Peking University, Beijing 100191, PR China. Electronic address:
Prenylated indole diketopiperazines represent a diverse array of alkaloids with complex chemical scaffolds and with a wide range of biological activities. Aiming to discover bioactive metabolites with structural novelty, genomic annotation in association with the MS/MS-based molecular networking demonstrated a deep-sea derived fungus Aspergillus puulaauensis F77 containing a profile of diketopiperazines. Targeted separation of the cultured fungus led to the isolation of 19 undescribed austamide-type diketopiperazines namely versicoines A-S.
View Article and Find Full Text PDFOrg Biomol Chem
December 2024
Hainan Pharmaceutical Research and Development Science Park, Hainan Academy of Medical Sciences, Hainan Medical University, No. 3 Xueyuan Road, Haikou 571199, China.
Two new quinazolinone nitriles (1 and 2) and one new indole alkaloid (3), together with 13 known compounds, were isolated from the deep-sea-derived MCCC 3A00265. Their structures were determined by extensive spectroscopic analysis, with the absolute configurations established by comparing experimental and calculated electronic circular dichroism (ECD) and optical rotation (OR) data as well as biogenetic considerations. Viricyanoamides A and B (1 and 2) are the sole representatives of quinazolinones featuring a nitrile group, while solitumidine F (3) incorporates a rare pyrrolidinedione unit as an indole terpenoid.
View Article and Find Full Text PDFJ Nat Prod
December 2024
Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, People's Republic of China.
Twelve new breviane spiroditerpenoids, namely, chrysobreviones A-L (-), together with seven structurally related analogues (-) were isolated from the EtOAc extract of the fermented cultures of deep-sea-derived fungus sp. F59. These structures including absolute configurations were resolved on the basis of extensive analysis of NMR spectroscopic data and HRESIMS, in association with experimental and calculated ECD data as well as the modified Mosher's method.
View Article and Find Full Text PDFChem Biodivers
December 2024
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
Marine fungi are considered important resources for new lead compounds in One Strain Many Compounds (OSMAC) strategy. In particular, deep-sea derived fungi have been deemed potent for novel bioactive structures due to their extreme living environment and evolution of special biosynthetic gene clusters (BGCs) for secondary metabolites. Chemical investigations of the deep-sea derived Penicillium sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!