A chiral heterogeneous catalyst derivative of (-)-4,5-dimethyl-3,6-bis(1-naphthyl)-1,2-benzenedisulfonimide is proven here to be efficient in a three-component asymmetric Passerini protocol, carried out in a deep eutectic solvent. Reaction conditions are mild and green, while enantioselectivity is excellent. The catalyst was easily recovered and reused with no decrease in its catalytic activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037113 | PMC |
http://dx.doi.org/10.1039/d1ra05297g | DOI Listing |
Heliyon
January 2025
Department of Chemistry, Faculty of Basic Sciences, Ilam University, P.O. Box 69315516, Ilam, Iran.
This study highlights an innovative approach to catalysis by utilizing natural asphalt as a support material for developing carbon-based catalysts. By leveraging the principles of green chemistry, the research aims to create recyclable and environmentally friendly heterogeneous catalytic systems. This aligns with the growing demand for greener technologies and the use of biocompatible materials in chemical processes.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming 650500, PR China. Electronic address:
Phosphorus (P)-doping H-ZSM-5 zeolites, which is crucial for industrial applications, aim to adjust both acidity and framework stability while optimizing product distribution in heterogeneous catalysis. Nonetheless, current phosphating methods often suffer from inadequate phosphorus dispersion and unclear interfacial interactions with framework aluminum (Al). In this work, P-doping ZSM-5 zeolites were successfully one-step prepared by using tributylphosphine served as an organophosphorus precursor, assisting by density functional theory calculations.
View Article and Find Full Text PDFSci Rep
January 2025
Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.
In this research, with the Green Chemistry approach, to load more sulfonic acid active sites on catalyst surfaces, a nanocomposite material based on core-shell magnetite coated with vinyl silane and a sulfonated polymeric brush-like structure is designed and synthesized as a new class of efficient solid acid catalysts, referred to as FeO@VS-APS brush solid acid. The synthesized catalyst was comprehensively characterized by a range of instrumental techniques, including XRD, SEM, TEM, FT-IR, EDX, TGA, and VSM. The activity of the catalyst was evaluated in Biginelli, Strecker, and esterification reactions.
View Article and Find Full Text PDFSci Rep
January 2025
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, University of Science and Technology, 16846-13114, Tehran, Iran.
In this research, graphene oxide-polyaniline (GO-PANI) nanocomposite was successfully synthesized and its catalytic performance was evaluated for the synthesis of N-aryl-1,4-dihydropyridine (1,4-DHP) and hydroquinoline derivatives. The GO nanosheets were prepared using the Hummers' method, and in-situ polymerization of aniline was conducted with ammonium persulfate (APS) serving as the polymerization initiator. The synthesized nanocomposite demonstrated notable efficiency, achieving yields of 80-94% for 1,4-DHP derivatives and 84-96% for hydroquinoline derivatives.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Petroleum Engineering, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran.
Purpose: Biodiesel is a non-toxic, renewable, and environmentally friendly fuel used in compression ignition engines. This work aimed to develop FeO/SiO as a cheap, magnetic, and easy separable catalyst for biodiesel production from waste oil by sono-catalytic transesterification.
Methods: Fe₃O₄-SiO₂ was prepared using a modified Stober method and used as a heterogeneous catalyst in an ultrasound-assisted transesterification reaction to produce biodiesel.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!