Computer vision (CV) algorithms are widely utilized in imaging processing for medical and personal electronics applications. In sensorics CV can provide a great potential to quantitate chemosensors' signals. Here we wish to describe a method for the CV-assisted spectrofluorometer-free detection of common nitro-explosive components, 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT), by using polyaromatic hydrocarbon (PAH, PAH = 1-pyrenyl or 9-anthracenyl) - based -type chemosensors. The PAH components of these chemical are able to form stable, bright emissive in a visual wavelength region excimers, which allows their use as extended matrices of the RGB colors after imaging and digital processing. In non-polar solvents, the excimers have poor chemosensing properties, while in aqueous solutions, due to the possible micellar formation, these excimers provide "turn-off" fluorescence detection of DNT and TNT in the sub-nanomolar concentrations. A combination of these PAH-based fluorescent chemosensors with the proposed CV-assisted algorithm offers a fast and convenient approach for on-site, real-time, multi-thread analyte detection without the use of fluorometers. Although we focus on the analysis of nitro-explosives, the presented method is a conceptual work describing a general use of CV for quantitative fluorescence detection of various analytes as a simpler alternative to spectrofluorometer-assisted methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037216PMC
http://dx.doi.org/10.1039/d1ra03108bDOI Listing

Publication Analysis

Top Keywords

computer vision
8
detection common
8
common nitro-explosive
8
nitro-explosive components
8
fluorescence detection
8
detection
5
vision spectrofluorometer-assisted
4
spectrofluorometer-assisted detection
4
components -type
4
-type pah-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!