Vapor phase -methylation of 4-chlorophenol with methanol was studied over MnO catalyst with two kinds of morphologies. Here, MnO was prepared by a precipitation and hydrothermal method, and showed the morphology of nanoparticles and nanowires, respectively. XRD characterization and BET results showed that, with the increase of calcination temperature, MnO had a higher crystallinity and a smaller specific surface area. N adsorption/desorption and TPD measurements indicated that MnO nanowires possessed larger external surface areas and more abundant acid and base sites. Simultaneously, in the fixed bed reactor, methanol was used as the methylation reagent for the -methylation reaction of 4-chlorophenol. XRD, XPS, TG-MS and other characterizations made it clear that methanol reduced 4-chlorophenol and its methide, which were the main side-reactions. And Mn was reduced to Mn under the reaction conditions. Changing the carrier gas N to a H/Ar mixture further verified that the hydrogen generated by the decomposition of methanol was not the reason for dechlorination of 4-chlorophenol compounds. Here we summarized the progress of 4-chlorophenol methylation based on the methylation of phenol. Also, we proposed a mechanism of the 4-chlorophenol dechlorination effect which was similar to the Meerwein-Ponndorf-Verley-type (MPV) reaction. The crystal phase and carbon deposition were investigated in different reaction periods by XRD and TG-DTA. The reaction conditions for the two kinds of morphologies of the MnO catalyst such as calcination temperature, reaction temperature, phenol-methanol ratio and reaction space velocity were optimized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033982PMC
http://dx.doi.org/10.1039/d1ra01062jDOI Listing

Publication Analysis

Top Keywords

morphologies mno
12
-methylation 4-chlorophenol
8
mno catalyst
8
kinds morphologies
8
calcination temperature
8
reaction conditions
8
4-chlorophenol
7
reaction
7
mno
6
application morphologies
4

Similar Publications

LiMnO, a significant cathode material for lithium-ion batteries, has garnered considerable attention due to its low cost and environmental friendliness. However, its widespread application is constrained by its rapid capacity degradation and short cycle life at elevated temperatures. To enhance the electrochemical performance of LiMnO, we employed a liquid-phase co-precipitation and calcination method to incorporate Cr into the LiMnO cathode material, successfully synthesizing a series of LiCrMnO (x = 0~0.

View Article and Find Full Text PDF

Objectives: To evaluate the color change and trans-amelodentinal cytotoxicity of a 22% carbamide peroxide (CP) bleaching gel containing different concentration of manganese oxide (MnO).

Material And Methods: Enamel/dentin discs adapted to artificial pulp chambers were distributed according to treatments: CN-No treatment; CP22%-22%CP; CP22 + 2MnO-22%CP + 2 mg/mLMnO; CP22% + 6MnO-22%CP + 6 mg/mLMnO; CP22% + 10MnO-22%CP + 10 mg/mLMnO applied for 2 h for 15 days. Color change-CC (ΔE and ΔWI) (n = 8) was determined at 5, 10, and 15-day periods (ANOVA/Sidak).

View Article and Find Full Text PDF

The P2-NaMnO cathode material has long been constrained by phase transitions induced by the Jahn-Teller (J-T) effect during charge-discharge cycles, leading to suboptimal electrochemical performance. In this study, we employed a liquid phase co-precipitation method to incorporate Ti during the precursor MnO synthesis, followed by calcination to obtain NaTiMnO materials. We investigated the effects of Ti doping on the structure, morphology, Mn concentration, and Na diffusion coefficients of NaTiMnO.

View Article and Find Full Text PDF

Numerous conduits have been developed to improve peripheral nerve regeneration. However, challenges remain, including remote control of conduit function, and programmed cell behaviors like orientation. We synthesized FeO-MnO@Zirconium-based Metal-organic frameworks@Retinoic acid (FMZMR) core-shell and assessed their impact on Schwann cell function and behavior within conduits made from decellularized human umbilical arteries (DHUCA) under magnetic field (MF).

View Article and Find Full Text PDF

An antioxidant nanozyme for targeted cardiac fibrosis therapy post myocardial infarction.

J Nanobiotechnology

December 2024

Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Cardiovascular Surgery, School of Medicine, Renji Hospital, Institute of Molecular Medicine (IMM), Shanghai Jiao Tong University, Shanghai, 200240, China.

The excessive release of reactive oxygen species (ROS) after myocardial infarction (MI) disrupts the natural healing process, leading to cardiac fibrosis and compromising patient prognosis. However, the clinical application of many antioxidant drugs for MI treatment is hindered by their poor antioxidant efficacy and inability to specifically target the heart. Here we developed a tannic acid-modified MnO nanozyme (named MnO@TA), which can achieve cardiac targeting to inhibit post-MI fibrosis and enhance cardiac function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!