Valence stability of aliovalent ions is mostly correlated with lattice site potential in ionic crystals. Madelung electrostatic potential is obtained by adding all the lattice site potentials for all the ions present in a crystal structure. Therefore, valence stability and the stability of a crystal structure can be better understood with consideration of both the lattice site potential and Madelung electrostatic potential. This was first demonstrated more than four decades ago by one of the present authors. We revisit this situation by using re-calculated lattice site potential and Madelung electrostatic potential for perovskite structure type ABO compounds using a new computer program VESTA. We show that the formation of a perovskite structure type compound with the general formula ABO (where A and B are cations and O is an oxide ion) becomes energetically favorable when it has a higher Madelung electrostatic potential than the combined Madelung electrostatic potential of parent binary compounds AO and BO or BO. It is further shown that strong lattice site potential results in stability of high valence or high valence ions can be stabilized in a lattice site with strong lattice-site potential. It further follows that certain ions experience maximum lattice site potential at the B ion lattice site of the perovskite structure when compared to other structures such as fluorite BO, rutile BO and corundum BO. Therefore, (i) the stability of an ion with a high (and uncommon) valence state at the B site being higher than that at the A site, (ii) occurrence of point defects at A or O sites with weak lattice site potentials, respectively and (iii) instability of perovskite ABO, and ABO compounds, respectively can be rationalized by lattice site potential and Madelung electrostatic potential analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033973 | PMC |
http://dx.doi.org/10.1039/d1ra01979a | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China.
CO hydrogenation to methanol using green hydrogen derived from renewable resources provides a promising method for sustainable carbon cycle but suffers from high selectivity towards byproduct CO. Here, we develop an efficient PdZn-ZnO/TiO catalyst by engineering lattice dislocation structures of TiO support. We discover that this modification orders irregularly arranged atoms in TiO to stabilize crystal lattice, and consequently weakens electronic interactions with supported active phases.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), IIT M Research Park, Chennai 600113, India.
The MgSb-based layered compounds exhibit exceptional thermoelectric properties over a wide temperature range and possess the potential to supplant traditional BiTe modules with reliable and economical MgSb-based thermoelectric devices, contingent upon the availability of a complementary p-type MgSb material with high thermoelectric efficiency comparable to that of n-type MgSb. We provide a simpler method involving the codoping of monovalent atoms (K and Na) at the Mg site of the MgSb lattice to improve the thermoelectric performance of p-type MgSb. K-Na codoping results in a peak power factor of around 0.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
Understanding the oxygen evolution reaction (OER) mechanism is pivotal for improving the overall efficiency of water electrolysis. Despite methylammonium lead halide perovskites (MAPbX) have shown promising OER performance due to their soft-lattice nature that allows lattice-oxygen oxidation of active α-PbO layer surface, the role of A-site MA or X-site elements in the electrochemical reconstruction and OER mechanisms has yet to be explored. Here, it is demonstrated that the OER mechanism of perovskite@zeolite composites is intrinsically dominated by the A-site group of lead-halide perovskites, while the type of X-site halogen is crucial for the reconstruction kinetics of the composites.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States.
In halide perovskites, photocarriers can have strong polaronic interactions with point defects. For iodide-deficient MAPbI, we found that the Fermi level can shift significantly by 0.6-0.
View Article and Find Full Text PDFNanoscale
January 2025
Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India.
Utilizing the soft-lattice nature of metal halide perovskites, we employ post-synthetic cross-ion exchange to synthesize a series of narrow band-gap colloidal nanocrystals of methylammonium-based lead iodide solid solutions of composition FAMAPbI, as well as those of triple-cation composition CsFAMAPbI (TCPbI). The ability to finely tune the compositions not only helps in tailoring the optical properties in the near-infrared region, but also improves the stability of these colloidal nanocrystals towards moisture, which has been demonstrated as compared to their bulk counterparts. The thermal stability of these solid solutions is also comparable to that of the bulk, as evidenced by thermogravimetric studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!