The development of high-efficiency and durable bifunctional electrocatalysts is an important and challenging topic in the area of energy storage/conversion. Herein, we prepared metallic cobalt nanoparticle decorated N-doped graphitic sheets (Co@NGr) by adopting facile pyrolysis of a mixed ligand cobalt-based MOF (CoMOF-2) as a sacrificial template displaying good OER and HER activity. The catalytic material harvested at three different pyrolytic temperatures was characterized by various analytical methods such as PXRD, SEM, TEM, Raman, and XPS analyses. The catalytic activity of the obtained hybrid composite materials towards oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) was studied. Co@NGr-900 was found to be an efficient bifunctional electrocatalyst and 10 mA cm current density was afforded at an overpotential of 390 mV for OER and 340 mV for HER respectively. This study provides insight for the development of cost-effective nonprecious element-based electrocatalysts for water splitting which has relevance in energy storage and conversion. Catalytic performance is governed by the synergistic compositional effect of metallic cobalt/nitrogen-doping in the graphitic carbon increasing the electrical conductivity/active sites of the composite material.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9034053 | PMC |
http://dx.doi.org/10.1039/d1ra03691b | DOI Listing |
PNAS Nexus
January 2025
CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
The relentless depletion of fossil fuels accentuates the urgent necessity for the sustainable synthesis of chemicals from renewable biomass. 5-Hydroxymethylfurfural (HMF), extracted from lignocellulosic biomass, emerges as a beacon of hope for conversion into value-added chemicals. However, the inherent susceptibility of its unsaturated aldehyde groups to excessive oxidation often culminates in undesired reactions, compromising both the yield and specificity of the desired products.
View Article and Find Full Text PDFJ Biotechnol
December 2024
School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin D04 N2E5, Ireland; BiOrbic Bioeconomy Research Centre, O'Brien Centre for Science [Science East], University College Dublin, Dublin D04 N2E5, Ireland. Electronic address:
We demonstrate the proof of concept of increasing the bioavailability of carbon substrates, derived from plastic waste, for their conversion to the biodegradable polymer polyhydroxyalkanoate [PHA] by bacteria and test various approaches to PHA accumulation through batch, fed batch and continuous culture. Styrene, ethylbenzene, and toluene are produced from the pyrolysis of mixed plastic waste (Kaminsky, 2021; Miandad et al., 2017), but they are volatile and poorly soluble in water making them difficult to work with in aqueous fermentation systems.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
To explore the effects of the components in the raw materials and by-products of co-pyrolysis on the physicochemical properties of biochar, rice husk (RH, which has a high percentage of lignin and a low content of N) and sawdust (SD, which has a high percentage of both cellulose and N) were used as typical raw materials to prepare co-pyrolysis biochar. The benzene vapor adsorption performance of the obtained biochar was then tested on a fixed-bed device. At the same time, the by-product components generated during pyrolysis were analyzed using thermogravimetric (TG), scanning electron microscopy (SEM), and gas chromatography-mass spectrometry (GC-MS).
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Mechanical Engineering, Quzhou University, Quzhou, 324000, China.
Plastic blends were co-pyrolyzed under non-isothermal conditions in a thermogravimetric (TG) analyzer. The co-pyrolysis characteristics and kinetic triplet, i.e.
View Article and Find Full Text PDFWaste Manag
December 2024
Petroleum and Energy from Biomass Research Group, Department of Chemistry, Federal University of Sergipe, São Cristóvão 49107-230, Sergipe, Brazil. Electronic address:
Post-consumer waste management systems have proven insufficient to meet the growing global demand. In this context, adopting alternative pathways that complement established practices, such as chemical recycling, becomes essential. Accordingly, this study evaluated the potential of the co-pyrolysis process to manage polyethylene terephthalate (PET) residues and waste cooking oil (WCO), converting them into industrial inputs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!