Precise patterning of 2D materials into micro- and nanostructures presents a considerable challenge and many efforts are dedicated to the development of processes alternative to the standard lithography. In this work we show a fabrication technique based on direct electron beam lithography (EBL) on MoS on polydimethylsiloxane (PDMS) substrates. This easy and fast method takes advantage of the interaction of the electron beam with the PDMS, which at high enough doses leads to cross-linking and shrinking of the polymer. At the same time, the adhesion of MoS to PDMS is enhanced in the exposed regions. The EBL acceleration voltages and doses are optimized in order to fabricate well-defined microstructures, which can be subsequently transferred to either a flexible or a rigid substrate, to obtain the negative of the exposed image. The reported procedure greatly simplifies the fabrication process and reduces the number of steps compared to standard lithography and etching. As no additional polymer, such as polymethyl methacrylate (PMMA) or photoresists, are used during the whole process the resulting samples are free of residues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033649PMC
http://dx.doi.org/10.1039/d1ra00885dDOI Listing

Publication Analysis

Top Keywords

electron beam
12
beam lithography
8
mos pdms
8
pdms substrates
8
standard lithography
8
lithography
4
lithography direct
4
direct patterning
4
patterning mos
4
pdms
4

Similar Publications

Nanoscale semiconductors offer significant advantages over their bulk semiconductor equivalents for electronic devices as a result of the ability to geometrically tune electronic properties, the absence of internal grain boundaries, and the very low absolute number of defects that are present in such small volumes of material. However, these advantages can only be realized if reliable contacts can be made to the nanoscale semiconductor using a scalable, low-cost process. Although there are many low-cost "bottom-up" techniques for directly growing nanomaterials, the fabrication of contacts at the nanoscale usually requires expensive and slow techniques like e-beam lithography that are also hard to scale to a level of throughput that is required for commercialization.

View Article and Find Full Text PDF

Signs of in-vivo aging of zirconia from explanted dental implants with porous coating after several years in function.

Acta Biomater

January 2025

MATEIS, UMR CNRS 5510, INSA, FR- 7 Avenue Jean Capelle, 69621 Villeurbanne cedex, France. Electronic address:

The present study investigated the in vivo aging of yttria-stabilized zirconia (YSZ) oral implants (ZiUnite®) removed after 37 to 181 months. These implants featured a porous zirconia surface to enhance osseointegration. They were placed in prospective clinical investigations and had to be explanted due to peri-implant bone breakdown.

View Article and Find Full Text PDF

Site-specific plan-view (S)TEM sample preparation from thin films using a dual-beam FIB-SEM.

Ultramicroscopy

January 2025

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:

To fully evaluate the atomic structure, and associated properties of materials using transmission electron microscopy, examination of samples from three non-collinear orientations is needed. This is particularly challenging for thin films and nanoscale devices built on substrates due to limitations with plan-view sample preparation. In this work, a new method for preparation of high-quality, site-specific, plan-view TEM samples from thin-films grown on substrates, is presented and discussed.

View Article and Find Full Text PDF

High-Q Emission from Colloidal Quantum Dots Embedded in Polymer Quasi-BIC Metasurfaces.

Nano Lett

January 2025

Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Metasurfaces supporting narrowband resonances are of significant interest in photonics for molecular sensing, quantum light source engineering, and nonlinear photonics. However, many device architectures rely on large refractive index dielectric materials and lengthy fabrication processes. In this work, we demonstrate quasi-bound states in the continuum (quasi-BICs) using a polymer metasurface exhibiting experimental quality factors of 305 at visible wavelengths.

View Article and Find Full Text PDF

An applied noise model for low-loss EELS maps.

Ultramicroscopy

January 2025

Nanopatterning-Nanoanalysis-Photonic Materials Group, Department of Physics, Paderborn University, Warburgerstr. 100, Paderborn, 33098, Germany. Electronic address:

Electron energy-loss spectroscopy (EELS) performed in a scanning transmission electron microscope (STEM) is susceptible to noise, just like every other measurement. EELS measurements are also affected by signal blurring, related to the energy distribution of the electron beam and the detector point spread function (PSF). Moreover, the signal blurring caused by the detector introduces correlation effects, which smooth the noise.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!