Porous substrates composed of biodegradable polymers and nanoparticles have found extensive use as three-dimensional (3D) scaffolds to regenerate damaged tissues through the incorporation of cells or growth factors. Here, injectable thermally responsive hydrogels based on SiO nanoparticles (NPs), alginate, and gelatin biopolymers, with possible utilization for cartilage tissue engineering, are introduced. The nanocomposites contain different amounts of SiO NPs for reinforcement and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)/-hydroxysuccinimide (NHS) for chemical crosslinking of polymer chains in the 3D hydrogel network. The cross-sectional structure of the hydrogels containing 0.25, 1.5, and 3.0% SiO NPs was observed by FE-SEM, confirming porous morphology with interconnected pores. Based on the rheometer analyses, by increasing the amount of SiO NPs, the mechanical strength of the gels can be found. In addition, biodegradation studies show that the hydrogels without SiO are more unstable than the hydrogels containing SiO NPs. biocompatibility of the products tested by MTT assay indicates that cell viability and attachment depend on the presence of SiO NPs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032273 | PMC |
http://dx.doi.org/10.1039/d1ra02744a | DOI Listing |
Chemosphere
January 2025
Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, Guangdong Province, China. Electronic address:
Recent studies have raised concerns about the potential toxicity of amorphous silica (SiO) nanoparticles (NPs). This investigation explores the uptake, transport, and transpiration of silica NPs in Apium graveolens var. secalinum.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, Ireland.
This study provides a comprehensive investigation of antimicrobial additives (ZnO/AgNPs and SiO/AgNPs) on the properties of biodegradable ternary blends composed of poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL) by examining the morphology, thermal stability, crystallinity index, and cell viability of these blends. Overall, transmission electron microscopy (TEM) analysis revealed that AgNPs and SiO exhibited comparable sizes, whereas ZnO was significantly larger, which influences their release profiles and interactions with the blends. The addition of antimicrobials influences the rheology of the blends, acting as compatibilizers by reducing the intermolecular forces between biopolymers.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
To protect against harmful electromagnetic interference (EMI), it is crucial to fabricate composite with high total electromagnetic shielding efficiency (SE); In this study, FeNi-NiFeO-SiO nanoparticles (NPs) were synthesized using one-pot method and decorated on carbon nanotube's (CNT) sidewall. The final product was magnetic-ceramic/conductive (FeNi-NiFeO-SiO/MWCNT) nanocomposite. The EMI shielding characteristic of FeNi-NiFeO-SiO NPs and FeNi-NiFeO-SiO/MWCNT nanocomposite was investigated in the range of X and Ku frequency band.
View Article and Find Full Text PDFSmall
January 2025
Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstr. 4, 85748, Garching, Germany.
Within the material family of metal-organic frameworks (MOFs) the subclass of flexible MOFs (flexMOFs) has attracted great attention, showing structural flexibility as a response to external stimuli such as guest adsorption, temperature, and pressure. Hybrid composites like nanoparticle (NP) loaded flexible MOFs, which stand to potentially combine advantageous properties of both are yet largely unexplored. Here the synthesis of flexMOFs with surface mounted nanoparticles, e.
View Article and Find Full Text PDFBiomolecules
December 2024
School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China.
The development of a novel strategy for the measurement of SARS-CoV-2 IgG antibodies is of vital significance for diagnosis and effect of vaccination evaluation. In this investigation, an SiO@Au@CDs nanoparticle (NP)-based lateral flow immunoassay (LFIA) strip was fabricated and coupled with a miniaturized fluorimeter. The morphology features and particle sizes of the SiO@Au@CDs NPs were characterized carefully, and the results indicated that the materials possess monodisperse, uniform, and spherical structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!