A novel way of obtaining highly porous cements is foaming them with the use of nonionic surface active agents (surfactants). In this study, foamed calcium phosphate cements (fCPCs) intended for use were fabricated by a surfactant-assisted foaming process. Three different surface active agents, Tween 20, Tween 80 and Tetronic 90R4, were used. The amount of surfactant, based on its critical micelle concentration and cytotoxicity as well as foaming method, was determined. It has been established that in order to avoid cytotoxic effects the concentration of all applied surfactants in the cement liquid phases should not exceed 1.25 g L. It was found that Tetronic 90R4 had the lowest cytotoxicity whereas Tween 20 had the highest. The influence of the type of surfactant used in the fabrication process of bioactive macroporous cement on the physicochemical and biological properties of fCPCs was studied. The obtained materials reached higher than 50 vol% open porosity and possessed compressive strength which corresponds to the values for cancellous bone. The highest porosity and compressive strength was found for the material with the addition of Tween 80. investigations proved the chemical stability and high bioactive potential of the examined materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9036830PMC
http://dx.doi.org/10.1039/d1ra04266aDOI Listing

Publication Analysis

Top Keywords

surface active
12
active agents
12
highly porous
8
calcium phosphate
8
nonionic surface
8
tetronic 90r4
8
compressive strength
8
development highly
4
porous calcium
4
phosphate bone
4

Similar Publications

In this study, ultrasound-assisted glycated ovalbumin (G-UOVA) based on natural deep eutectic solvents (NADES) was prepared using response surface optimization. The binding affinity of (-)-gallocatechin gallate (GCG) to native OVA (NOVA), ultrasound treated OVA (UOVA), glycated OVA (GOVA), and G-UOVA followed G-UOVA > GOVA > UOVA > NOVA. The effects of various modifications and GCG binding on the secondary structure, particle size, and thermal stability of NOVA were investigated.

View Article and Find Full Text PDF

Designing catalysts with well-defined active sites with chemical functionality responsive to visible light has significant potential for overcoming scaling relations limiting chemical reactions over heterogeneous catalyst surfaces. Visible light can be leveraged to facilitate the removal of strongly bound species from well-defined single cationic sites (Rh) under mild conditions (323 K) when they are incorporated within a photoactive perovskite oxide (Rh-doped SrTiO). CO, a key intermediate in many chemistries, forms stable geminal dicarbonyl Rh complexes (Rh(CO)), that could act as site blockers or poisons during a catalytic cycle.

View Article and Find Full Text PDF

Effective Nitrate Electroconversion to Ammonia Using an Entangled CoO/Graphene Nanoribbon Catalyst.

ACS Appl Mater Interfaces

December 2024

Institute of Chemistry, Federal University of Mato Grosso do Sul, Avenida Senador Filinto Muller 1555, Campo Grande, Mato Grosso do Sul 79074-460, Brazil.

There has been huge interest among chemical scientists in the electrochemical reduction of nitrate (NO) to ammonia (NH) due to the useful application of NH in nitrogen fertilizers and fuel. To conduct such a complex reduction reaction, which involves eight electrons and eight protons, one needs to develop high-performance (and stable) electrocatalysts that favor the formation of reaction intermediates that are selective toward ammonia production. In the present study, we developed and applied CoO/graphene nanoribbon (GNR) electrocatalysts with excellent properties for the effective reduction of NO to NH, where NH yield rate of 42.

View Article and Find Full Text PDF

Pore-Controllable Synthesis of Phthalic Acid-Derived Hierarchical Activated Carbon for Dilute CO Capture.

Inorg Chem

December 2024

Textile Pollution Controlling Engineering Center of Ministry of Ecology and Environment, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.

Carbon capture and storage (CCS) from dilute sources is an important strategy for stabilizing the concentration of atmospheric carbon dioxide and global temperature. However, the adsorption process is extremely challenging due to the sluggish diffusion rate of dilute CO. Herein, -phthalic acid (PTA)-derived hierarchical porous activated carbon (PTA-C) with abundant micro- and mesopores was successfully prepared for dilute CO (2 vol %) capture at ambient conditions.

View Article and Find Full Text PDF

Insights into the Assembly of Peptides Catalyzed by Polysaccharides.

J Phys Chem B

December 2024

State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

Nucleation is a critical step that determines the assembly pathway and the structure and functions of the peptide assemblies. However, the dynamic evolution of interactions between nucleating agents and peptides, as well as between peptides themselves during the nucleation process, remains elusive. Herein, we show that the heterogeneous nucleating agent carboxymethylcellulose (CMC) can promote the nucleation of Aβ (KF) peptide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!