Endowing photocatalytic materials with a broader range of light responses is important for improving their performance and solar energy utilization. In this study, a simple sol-gel method was used to prepare Yb/Tm-co-doped YO upconversion materials and YO:Yb, Tm/ZnO (Y/Z) composite photocatalysts for the photocatalytic degradation of dyes. The Y/Z composite photocatalyst achieved degradation rates of 38%, 95%, and 89% for methyl orange, methylene blue (MB), and acid chrome blue K dye solutions, respectively, within 30 minutes. The degradation efficiency for MB after three cycles of degradation was 86%. The spherical YO:Yb, Tm particles had diameters of 20-50 nm and attached to the ZnO nanosheets, forming a heterojunction structure with ZnO. Fluorescence spectroscopy showed that YO:Yb, Tm could convert near-infrared (NIR) light into three sets of ultraviolet light (290, 320, and 360 nm) under NIR excitation. Photoluminescence spectroscopy demonstrated that the photogenerated electron-hole pair recombination probability of the composite photocatalyst was significantly lower than that of ZnO nanosheets, thereby reducing the energy loss during the migration process. Furthermore, the addition of YO:Yb, Tm to ZnO substantially improved the absorption capacity for ultraviolet light, which enhanced the photocatalytic activity. A possible mechanism for the enhanced photocatalytic performance of the Y/Z composites was proposed based on the synergistic effect of heterojunction formation and the photoconversion process. The composite photocatalyst with upconversion characteristics and heterogeneous structure provides a new strategy for removing organic pollutants from water.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9036705PMC
http://dx.doi.org/10.1039/d1ra03066cDOI Listing

Publication Analysis

Top Keywords

composite photocatalyst
12
yoyb tm/zno
8
heterojunction structure
8
photocatalytic degradation
8
y/z composite
8
zno nanosheets
8
ultraviolet light
8
enhanced photocatalytic
8
yoyb
5
composite
5

Similar Publications

A review of electrospun metal oxide semiconductor-based photocatalysts.

iScience

January 2025

Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China.

In recent years, photocatalytic materials with a nanofiber-like morphology have garnered a surge of academic attention due to their distinctive properties, including an expansive specific surface area, a considerable high aspect ratio, a pronounced resistance to agglomeration, superior electron survivability, and robust surface activity. Consequently, the synthesis of photocatalytic nanofiber materials through various methodologies has drawn considerable attention. The electrospinning technique has been established as a prevalent method for fabricating nanofiber-structured materials, owing to its advantageous properties, including the ability for mass production and the assurance of high continuity.

View Article and Find Full Text PDF

Bacterial infections are a major global health challenge, posing severe risks to human well-being. Although numerous strategies have been developed to combat bacterial pathogens, their practical application is often hindered by operational constraints. Photocatalytic materials have emerged as promising candidates for bacterial disinfection and food preservation due to their efficiency and sustainability.

View Article and Find Full Text PDF

This work aimed at addressing the problem of hexavalent chromium pollution in the water environment, designing and preparing the Cu/CuO/NH-MIL-88B (Fe) heterojunction material with NH-MIL-88B (Fe) as the carrier, Cu/CuO was loaded on NH-MIL-88B (Fe) by light-assisted reduction. The loading of CuO effectively improves the visible light absorption capacity of the composite material. The SPR effect of Cu improves the separation and transfer of photogenerated carriers in the composite material.

View Article and Find Full Text PDF

Metal-free photocatalysts derived from earth-abundant elements have drawn significant attention owing to their ample supply for potential large-scale applications. However, it is still challenging to achieve highly efficient photocatalytic performance owing to their sluggish charge separation and lack of active catalytic sites. Herein, we designed and constructed a series of covalently bonded organic semiconductors to enhance water splitting and phenol degradation.

View Article and Find Full Text PDF

Hollow TiO@TpPa S-Scheme Photocatalyst for Efficient HO Production Through O in Deionized Water Using Phototautomerization.

Small

January 2025

Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, Hubei, 430078, P. R. China.

Hydrogen peroxide (HO) production through photocatalytic O reduction reaction (ORR) is a mild and cost-efficient alternative to the anthraquinone oxidation strategy. Of note, singlet state oxygen (O) plays a crucial role in ORR. Herein, a hollow TiO@TpPa (TOTP) S-scheme heterojunction by the Schiff base reactions involving 1,3,5-triformylphloroglucinol (Tp) and paraphenylenediamine (Pa) for efficient photocatalytic HO production in deionized water has been developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!