It remains an important challenge to apply machine learning in material discovery with limited-scale datasets available, in particular for the energetic materials. Motivated by the challenge, we developed a Property-oriented Adaptive Design Framework (PADF) to quickly design new energetic compounds with desired properties. The PADF consists of a search space, machine learning model, optimization algorithm and an evaluator based on quantum mechanical calculations. The effectiveness and generality of the PADF were assessed by two case studies on the heat of formation and heat of explosion as the target properties. 88 compounds were selected as the initial training dataset from the search space containing 84 083 compounds generated. SVR.lin/Trade-off coupled with E-state + SOB and KRR/KG coupled with CDS + E-state + SOB were determined to be the best combination pairs for the heat of formation and the heat of explosion, respectively. Most of the ten compounds selected from the first ten iterations exhibit better properties than the optimal sample in the initial dataset. Besides, the heat of explosion as the target property outperforms the heat of formation in designing energetic compounds with high detonation performance. In particular, a new compound selected at the 3rd iteration exhibits high potential as an explosive. Our strategy could be extended to other domains limited by small-scale datasets labeled.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037014 | PMC |
http://dx.doi.org/10.1039/d1ra03715c | DOI Listing |
Photosynthetica
January 2025
University of Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, 51100 Reims, France.
High temperatures severely affect plant growth and development leading to major yield losses. These temperatures are expected to increase further due to global warming, with longer and more frequent heat waves. Rhamnolipids (RLs) are known to protect several plants against various pathogens.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department of Biology, University of Konstanz, Konstanz, Germany.
Diatoms dominate phytoplankton communities in turbulent waters, where light fluctuations can be frequent and intense. Due to this complex environment, these heterokont microalgae display remarkable photoprotection strategies, including a fast Non-Photochemical Quenching (NPQ). However, in nature, several abiotic parameters (such as temperature) can influence the response of photosynthetic organisms to light stress in a synergistic or antagonistic manner.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
Legionella pneumophila, the causative agent of Legionnaires' disease, employs the Icm/Dot Type IV secretion system (T4SS) to replicate in amoebae and macrophages. The opportunistic pathogen responds to stress by forming 'viable but non-culturable' (VBNC) cells, which cannot be detected by standard cultivation-based techniques. In this study, we document that L.
View Article and Find Full Text PDFAnal Chem
January 2025
Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, Strasbourg F-67000, France.
The worldwide spread of antibiotic resistance is considered to be one of the major health threats to society. While developing new antibiotics is crucial, there is also a strong need for next-generation analytical methods for studying the physiological state of live bacteria in heterogeneous populations and their response to environmental stress. Here we report a single-cell high-throughput method to monitor changes in the bacterial cell envelope in response to stress based on ratiometric flow cytometry.
View Article and Find Full Text PDFBiol Res
January 2025
School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China.
Background: Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!