Due to the long half-life of Cs ( ∼ 30 years), the selective extraction of cesium (Cs) from high level liquid waste is of paramount importance in the back end of the nuclear fuel cycle to avoid long term surveillance of high radiotoxic waste. As 1,3-di-octyloxycalix[4]arene-crown-6 (CC6) is suggested to be a promising candidate for selective Cs extraction, the improvement in the Cs extraction efficiency by CC6 has been investigated through the optimization of the effect of dielectric media on the extraction process. The effects of the feed acid (HNO, HCl, and HClO) and the composition of the diluents for the ligand in the organic phase on the extraction efficiency of Cs have been investigated systematically. In 100% -octanol medium, Cs is found to form a 1 : 1 ion-pair complex with CC6 (0.03 M) providing a very high distribution ratio of ∼ 22, suggesting -octanol as the most suitable diluent for Cs extraction. No significant interference of other relevant cations such as Na, Mg and Sr was observed on the value in the optimized solvent system. Density functional theory (DFT) based calculations have been carried out to elucidate the reason of ionic selectivity and enhanced Cs extraction efficiency of CC6 in the studied diluent systems. In addition to the ionic size-based selectivity of the crown-6 cavity, the polarity of the organic solvent system, the hydration energy of the ion, and the relative reorganization of CC6 upon complexation with Cs are understood to have roles in achieving the enhanced efficiency for the extraction of Cs by the CC6 extractant in nitrobenzene medium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9034044PMC
http://dx.doi.org/10.1039/d1ra02661eDOI Listing

Publication Analysis

Top Keywords

solvent system
12
extraction efficiency
12
extraction
9
selective extraction
8
efficiency cc6
8
cc6
6
achieving highly
4
highly efficient
4
efficient selective
4
selective cesium
4

Similar Publications

Recently, the widespread utilization of combustible materials has increased the risks associated with building fires. Early fire-warning systems represent a pivotal strategy in mitigating losses incurred from fire incidents and offer considerable potential for the enhancement of fire safety management. This study focuses on the synthesis of bio-based ionic hydrogels, specifically calcium alginate/polyacrylamide/glycerol/lithium bromide (CPG-L), as a novel fire sensor.

View Article and Find Full Text PDF

Analysis of multi-class unregulated organic compounds in soil and biosolids using LC-MS/MS.

Environ Pollut

January 2025

Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, USA; Ecological Sciences & Engineering Interdisciplinary Graduate Program, Purdue University, West Lafayette, Indiana 47907, USA.

Numerous unregulated organic compounds (UOCs) including pharmaceuticals, opioids, and personal care products (PCPs) end up in wastewater. UOC presence in biosolids (a wastewater treatment byproduct), which are applied to soil for different reasons raises environmental and health risk concerns. In this study, two multi-class extraction methods were developed and validated to target 111 UOCs from 8 different major families simultaneously in biosolids and biosolids-impacted soil.

View Article and Find Full Text PDF

Enhancement of mechanical properties in reactive polyurethane film via in-situ assembly of embedded cellulose nanocrystals.

Int J Biol Macromol

January 2025

Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China. Electronic address:

Comparing to the solvent-based and waterborne polyurethanes (PU), the solvent-free reactive PU (RPU) is prepared via in-situ polymerization and film-formation of isocyanate-capped prepolymers and macromolecular polyols in solvent-free system. Thus, the carbon emissions and environmental pollutions are significantly reduced. However, the rapid polymerization also challenges the well control of structure and properties, especially the ordered microstructures.

View Article and Find Full Text PDF

Efforts to reduce the impact of chemical processes on the environment are leading to a shift to enzymatic alternatives, with laccases standing out for their versatile substrate oxidation capabilities. This study addresses the improvement of biocatalytic reactions by deep eutectic solvents (DES), in particular DES-based aqueous two-phase systems (ATPS) for the extraction of biomolecules. Continuous laccase extraction from crude samples was achieved using a DES-based ATPS, which was first optimized in a batch extractor and later intensified in a microextractor.

View Article and Find Full Text PDF

Background/objectives: This study investigates for the first time the use of the prilling technique in combination with solvent evaporation to produce nano- and submicrometric PLGA particles to deliver properly an active pharmaceutical ingredient. Curcumin (CCM), a hydrophobic compound classified under BCS (Biopharmaceutics Classification System) class IV, was selected as the model drug.

Methods: Key process parameters, including polymer concentration, solvent type, nozzle size, and surfactant levels, were optimized to obtain stable particles with a narrow size distribution determined by DLS analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!