A stomata-inspired superhydrophobic portable filter system.

RSC Adv

Beijing Key Lab of Cryo-biomedical Engineering, Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China

Published: May 2021

Stomata, specialized functional openings distributed on the leaf surface, are used for plant respiration by allowing gas exchange, , taking in carbon dioxide and releasing oxygen, and for water content regulation. Their function is vital to plant survival. Leaves with different wettability exhibit different stomata densities. In this study, we find that stomata on L. leaves are protected by superhydrophobic setae, which prevent direct contact between the stomata and water in humid environments by suspending water droplets on the top of the setae. Thus, oxygen and carbon dioxide are freely exchanged through the stomata. This structure inspired us to design and develop a mask for filtering solid particles and noxious gas from the atmosphere. The incoming gas is in convective contact with water, achieving a filtering efficiency. The solid particles and potential harmful gas in air are wetted and captured by water, leaving fresh air for healthy breathing. This novel design has potential applications in the treatment of respiratory diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033496PMC
http://dx.doi.org/10.1039/d1ra03297fDOI Listing

Publication Analysis

Top Keywords

carbon dioxide
8
solid particles
8
stomata
5
water
5
stomata-inspired superhydrophobic
4
superhydrophobic portable
4
portable filter
4
filter system
4
system stomata
4
stomata specialized
4

Similar Publications

What Impact Does Net Zero Action on Road Transport and Building Heating Have on Exposure to UK Air Pollution?

Environ Sci Technol

January 2025

Environmental Research Group, School of Public Health, Imperial College London, Sir Michael Uren Biomedical Engineering Hub, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom.

This study explores the cobenefits of reduced nitrogen dioxide (NO), ozone (O), and particulate matter (PM), through net zero (NZ) climate policy in the UK. Two alternative NZ scenarios, the balanced net zero (BNZP) and widespread innovation (WI) pathways, from the UK Climate Change Committee's Sixth Carbon Budget, were examined using a chemical transport model (CTM). Under the UK existing policy, Business as Usual (BAU), reductions in NO and PM were predicted by 2030 due to new vehicle technologies but plateau by 2040.

View Article and Find Full Text PDF

The electrochemical conversion of CO into high value-added carbon materials by molten salt electrolysis offers a promising solution for reducing carbon dioxide emissions. This study focuses on investigating the influence of molten salt composition on the structure of CO direct electroreduction carbon products in chloride molten salt systems. Using CaO as a CO absorber, the adsorption principle of CO in LiCl-CaCl, LiCl-CaCl-NaCl and LiCl-CaCl-KCl molten salts was discussed, and the reasons for the different morphologies and structures of carbon products were analyzed, and it was found that the electrolytic efficiency of the whole process exceeded 85%.

View Article and Find Full Text PDF

Carbon dioxide gas emboli is a potentially fatal complication that occurs more frequently during laparoscopic hepatectomy compared to other laparoscopic surgeries. The patient featured in this report had massive gas embolism confirmed by intraoperative transesophageal echocardiography (TEE) that were associated with episodes of severe hypoxemia, hemodynamic instability, and right ventricular failure requiring conversion to open hepatectomy. Abrupt abdominal decompression resulted in massive hemorrhage from a previously undetected defect in the middle hepatic vein.

View Article and Find Full Text PDF

The increased levels of carbon dioxide (CO) emissions due to the combustion of fossil fuels and the consequential impact on global climate change have made CO capture, storage, and utilization a significant area of focus for current research. In most electrochemical CO applications, water is used as a proton donor due to its high availability and mobility and use as a polar solvent. Additionally, supercritical CO is a promising avenue for electrochemical applications due to its unique chemical and physical properties.

View Article and Find Full Text PDF

Background: Health system and environmental factors play a significant role in achieving the World Health Organization (WHO) End Tuberculosis (TB) targets. However, quantitative measures are scarce or non-existent at a global level. We aimed to measure the progress made towards meeting the global End TB milestones from 2015 to 2020 and identify health system and environmental factors contributing to the success.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!